Finding Triangle-free 2-factors in General Graphs

David Hartvigsen*

February 25, 2024

Abstract

A 2-factor in a graph G is a subset of edges M such that every node
of GG is incident with exactly two edges of M. Many results are known
concerning 2-factors including a polynomial-time algorithm for finding
2-factors and a characterization of those graphs that have a 2-factor. The
problem of finding a 2-factor in a graph is a relaxation of the NP-hard
problem of finding a Hamilton cycle. A stronger relaxation is the problem
of finding a triangle-free 2-factor, that is, a 2-factor whose edges induce no
cycle of length 3. In this paper, we present a polynomial-time algorithm for
the problem of finding a triangle-free 2-factor as well as a characterization of
the graphs that have such a 2-factor and related min-max and augmenting
path theorems.

Keywords: combinatorial optimization; matchings

1 Introduction

Let G = (V, E) be an undirected graph with no parallel edges or loops. A subset
M C F is called a simple 2-matching if every node of G is incident with at most
2 edges of M. Hence the edges in a simple 2-matching induce paths and cycles
in G. A simple 2-matching M is called a 2-factor if every node of G is incident
with exactly 2 edges of M. The number of edges in a simple 2-matching is its
cardinality.

A simple 2-matching (2-factor) is called k-restricted, for k > 2 and integer,
if its edges induce no cycles of length k or less. We let Pj; denote the problem
of finding a maximum cardinality k-restricted simple 2-matching. Hence, P is
the problem of finding a maximum cardinality simple 2-matching and Pj is the
problem of finding a maximum cardinality simple 2-matching that induces no
cycles of length 3 (called triangles). Note that, for a given graph G = (V, E),
the problems Py for |V]/2 < k < |V| — 1 are equivalent to the problem of
finding a Hamilton cycle in G. Thus, the problems Py define a hierarchy of
relaxations of the Hamilton cycle problem. This hierarchy was introduced by

*Hartvigsen.1@nd.edu University of Notre Dame, Notre Dame, IN 46556 USA

Fisher, Nemhauser, and Wolsey [20] and further developed by Cornuéjols and
Pulleyblank [13, 14]. (More discussion of this work appears below.)

Problems involving simple 2-matchings have been extensively studied. A key
result is a polynomial-time algorithm solving P (using a reduction due to Tutte
[50] to the classical problem of finding a maximum cardinality matching (see
Edmonds [18])). There is also a well-known “good” characterization of those
graphs that have a 2-factor (see Belck [3] and Gallai [22]; for a generalization see
Tutte [49]). In general, we refer to this as a Tutte-type theorem. Also known is
a min-max theorem that characterizes maximum cardinality simple 2-matchings;
see [43] for the statement and a derivation that uses results in [48, 50, 8]. In
general, we refer to this as a Tutte-Berge-type theorem. See Schrijver [43] for a
thorough history of this body of work.

The problems Py, for k > 5, are known to be NP-hard. (See the following
section for details.) A polynomial-time algorithm for Ps; was presented in the
author’s Ph.D. thesis [26]. (It has never been submitted for publication.) The
complexity of problem P, is open. Complexity results for problems similar to
the Py problems appeared in Hell, Kirkpatrick, Kratochvil, and Kz [30].

In this paper, we focus on the problem P3;. We refer to 3-restricted simple
2-matchings (2-factors) as tri-free simple 2-matchings (2-factors). Our main
result is a polynomial-time algorithm for Ps. (It is significantly different from
the algorithm in [26].) Note that, if a graph contains a tri-free 2-factor, then
our algorithm finds one. As by-products of this algorithm, we obtain two
characterizations of maximum cardinality tri-free simple 2-matchings. The
first characterization is an “augmenting path” theorem in the style of the well-
known result for matchings due to Petersen [40] and Berge [7]. The augmenting
path theorem for matchings is easy to state and has an elementary (i.e., non-
algorithmic) proof. Our augmenting path theorem for tri-free simple 2-matchings
is also easy to state, but our proof uses the validity of the algorithm; an
elementary proof appears in [42]. The second characterization is a min-max
Tutte-Berge-type theorem. We also obtain a characterization of the graphs
that have a tri-free 2-factor (a Tutte-type theorem). The statements of the
latter two theorems make use of a new type of graph called the “tri-blossom
cluster.” These graphs are a generalization of graphs with an odd number of
nodes (from the study of classical matchings) and blossoms (from the study of
simple 2-matchings). (See [43].) Tri-blossom clusters are closely related to the
clique tree inequalities introduced by Grotschel and Pulleyblank [25] and the
more general bipartition inequalities introduced by Boyd and Cunningham [10]
(both of which provide facets for the travelling salesman polytope on complete
graphs). The algorithm follows the general format of Edmonds’ algorithm for
matchings, but is elaborated in a number of ways. A key elaboration consists of
two new constructs called “models” and “substructures.”

Related work is surveyed in Section 1.1. A high-level, intuitive overview
of the algorithm and some of our results is given in Section 1.2. Finally, the
organization of the paper is discussed in Section 1.3.

1.1 Related work

In this section we present an overview of work related to the Py hierarchy
of problems. In addition to work on the P problems, we discuss problems
involving 2-factors, edge weights, special classes of graphs, a closely related
matching problem, and jump systems (a generalization of matroids). Let us
start with a few definitions.

Let Q denote the problem of finding a k-restricted 2-factor in a graph. For
a graph G = (V, E), let w: E — R. We define the weight of a simple 2-matching
M in G as Y (w(e) : e € M). Let weighted-Py, (weighted-Qy,) denote the problem
of finding a maximum weight k-restricted simple 2-matching (2-factor) in a graph.
Cycles of length 4 and 5 are referred to as squares and pentagons, respectively.

Let us first consider what is known about the complexity of weighted-Pj, and
weighted-Qy. Polynomial-time algorithms for weighted-P, and weighted-Q4 are
known along with the associated polytopes (see Edmonds [17]; an algorithmic
implementation was reported in [19]; details appear in [43]). The complexities of
weighted- P and weighted-Q)3, in general graphs, are open. It has been observed
that weighted-Q4 is NP-hard for bipartite graphs by Kirély (see [21]), Russell
[42], and Cunningham [15]; hence, weighted-Q4 is NP-hard for general graphs.
Papadimitriou showed (see [13] for the proof) that Qs is NP-hard. It was
shown in [28] that Py, for k > 5, is NP-hard for a special class of graphs (see
below), hence it is NP-hard for general graphs, which implies it is NP-hard for
weighted- Py, for £ > 5. Finally, Cunningham and Wang [16] have studied, on
complete graphs, the polytopes whose extreme points are the incidence vectors
of k-restricted 2-factors (although no complete characterization is known for
k> 3).

The weighted-Q, problems can be used to find increasingly accurate, as k
increases, approximate solutions to the NP-hard problem of finding a maximum
weight Hamilton cycle in a complete graph, where the weights are non-negative
(see [20]). In particular, a solution to weighted-Q, in this situation, can be
transformed into a Hamilton cycle whose weight is at least kL_H times the
maximum weight of a Hamilton cycle. Hence, it is of interest to look for a
polynomial-time algorithm for weighted-Qs (an open problem). This paper
(which solves Pj, hence Q3) may provide a step in that direction.

Results related to these hierarchies have been reported for the special cases
of cubic and subcubic graphs; i.e., graphs with degree 3 at every node and
graphs with maximum degree 3, respectively. Vornberger [51] was the first to
consider these sorts of problems. He discovered, for cubic graphs, polynomial-
time algorithms for @3, weighted-Q3 and the problem of finding a 2-factor in
a cubic graph with no squares. He also showed the following two problems in
cubic graphs are NP-hard: finding a 2-factor with no pentagons and finding a
minimum (or maximum) weight 2-factor with no squares. Based on this work,
polynomial-time algorithms for P; and P4 on subcubic graphs appeared in [28]
(which imply the analogous results for the problems @) on subcubic graphs).
Additionally, [28] contains a proof (again expanding on work in [51]) that Ps,
for k > 5, is NP-hard on subcubic graphs (implying the same result for general

graphs, as reported above). That paper also contains a Tutte-type theorem and
a Tutte-Berge-type theorem for P3 and P, on subcubic graphs.

In [29], polynomial-time algorithms were given for weighted-Q3 and weighted-
P; on subcubic graphs, along with the associated polytopes. (The algorithm and
polytope for weighted-P3 are considerably more complex than the algorithm and
polytope for weighted-Qs.) Subsequently, for weighted-Ps on subcubic graphs, a
slightly more general algorithm and polytope were presented by Bérczi [4] and a
different, simpler algorithm was discovered by Kobayashi [32].

Independently of the work in [28], Bérczi and Végh [6] presented a polynomial-
time algorithm and Tutte-Berge-type theorem for a generalization of P, in
subcubic graphs and Bérczi and Kobayashi [5] presented a polynomial-time
algorithm for finding a maximum cardinality square-free simple 2-matching in
subcubic graphs (as well as a polynomial-time algorithm for a special weighted
version of this problem).

Closely related results appear in a paper of Boyd, Iwata, and Takazawa
[9]. They present a polynomial-time algorithm for finding a minimum weight
2-factor in a bridgeless cubic graph that covers all the 3-edge cuts; they also
present a description of the associated polytope. The paper also contains a
polynomial-time algorithm for finding a 2-factor in a bridgeless cubic graph that
covers all the 3-edge and 4-edge cuts.

Related results are also known for bipartite graphs. Note that only the
problems Q) and P, with k even are of interest in this case. It was shown
in [27] that P; (hence Q4) is polynomial-time solvable for bipartite graphs.
Subsequently, a simpler algorithm was discovered by Pap [39] and a faster
algorithm was discovered by Babenko [2]. As noted above, weighted-Q4 is NP-
hard for bipartite graphs. It is also known that Qg (hence Ps) is NP-hard for
bipartite graphs (see [24]).

A Tutte-Berge-type theorem for P, on bipartite graphs was discovered by
Kiraly [31]. Frank [21] developed an interesting generalization of this problem.
Related work has been done by Pap [39], Makai [36], and Takazawa [44, 45, 46, 47].
See also [31] for additional results.

Two additional problems have been considered where a condition is placed
on the excluded small cycles. Nam [37] presented a polynomial-time algorithm
for Py, where the squares in the original graph are node-disjoint. And Kobayashi
[34] presented a polynomial-time algorithm for weighted-Ps, where only a given
set of pairwise edge-disjoint triangles in the input graph is prohibited.

We next define another closely related problem. For each v € V, let §(v)
denote the set of edges of G incident with v. Then a 2-matching is a vector
x € {0,1,2}¥ such that x(d(v)) < 2 for all v € V. (Hence, an equivalent
definition of simple 2-matchings is obtained by additionally requiring z(e) <1
for all e € E.) A 2-matching is called perfect if x(6(v)) = 2 for all v € V. Given
a weight vector w € R¥, the weight of a 2-matching « is wz. A polynomial-time
algorithm for finding a maximum weight 2-matching follows from [38] (see [43] for
details), a Tutte-Berge-type theorem appeared in [23] (see [43] for more detail),
a Tutte-type theorem appeared in [49] (characterizing perfect 2-matchings), and
a description of the associated polytope appeared in [17] (see also [41]). A

G, 4 d G: d

Figure 1: Two examples of augmenting paths

2-matching is called t¢ri-free if no three edges with z(e) = 1 induce a triangle in
G. Cornuéjols and Pulleyblank in [13, 14] studied tri-free 2-matchings. They
showed that all the results just mentioned for 2-matchings have analogs for
tri-free 2-matchings. (See also [12, 11].) A lower complexity algorithm for finding
maximum weight tri-free 2-matchings by Babenko, Gusakov, and Razenshteyn
appeared in [1].

Finally, we mention that Cunningham [15] showed that, for k& = 3, the degree
sequences of k-restricted simple 2-matchings induce a jump system and that this
is not true for £ > 5. The jump system result was shown to hold for k = 4 by
Kobayashi, Szabd, and Takazawa [35] (see also [33]).

1.2 Overview of the paper

In this section we present a high-level, informal overview of our algorithm for Pj
and some of our results. Our goal is to help the reader develop some intuition
about the basic concepts in our algorithm and main theorems for Ps;. Rigorous
definitions appear in subsequent sections. Although our algorithm for Pj3 is
long, it follows the general form of Edmonds’ algorithm for matchings (and its
computational complexity is typical of such algorithms). As noted above, an
algorithm for P, can be obtained with a simple and elegant reduction to the
classical matching problem. Such a reduction for Ps is not known. Our algorithm
for Ps is an elaboration of this algorithm for P;, as interpreted on the original
graph, without the reduction. We begin this section by introducing some of the
basic concepts used in such an approach for P, and then discuss some challenges
that arise in adapting this to P;. We then introduce a new graph, called the
tri-blossom cluster, that arises in several of our results and is more complex than
the analogous and well-known blossoms from the study of Ps.

A key notion in Edmonds’ algorithm for matchings is the augmenting path.
This notion has an analog for the problem P,. Two examples illustrating this
for P, are given in Figure 1, where the thick edges are in a simple 2-matching.
Consider the paths given by the lower edges from node a to node b in G; and
from node c to node d in G'2. We call such paths alternating since the edges are
alternately in and out of the simple 2-matching as the path is traversed. (In
general, we allow alternating paths to revisit nodes, but not edges. In particular,
we allow the first and last nodes to be identical.) An alternating path is called
an augmenting path if exchanging the edges in and out of the simple 2-matching
along the path yields a new simple 2-matching with one more edge. Note that

Figure 2: Example of algorithms P, and Ps

each of these alternating paths is an augmenting path since the endnodes are
deficient, that is, they are incident with fewer than two edges of the simple
2-matching, and since the endedges are not in the simple 2-matching. Algorithms
for P, can be viewed as a search for augmenting paths.

Such an algorithm also immediately yields a theorem stating that a simple
2-matching has maximum cardinality if and only if it admits no augmenting
path. However, this result also has an elementary (i.e., non-algorithmic) proof
making use of the reduction of P to classical matchings.

Our algorithm for P5 is based on a similar search. However, our algorithm
must contend with the issue illustrated in graph G in Figure 1, where the simple
2-matching resulting from the exchange contains a triangle. So, we alter the
definition of augmenting path to be an alternating path such that an exchange
yields a tri-free simple 2-matching with one more edge. Then our algorithm for
Pj is a search for such paths. As for P, our algorithm demonstrates that a
tri-free simple 2-matching has maximum cardinality if and only if it admits no
augmenting path (using the altered definition). In this case, however, we do not
have an elementary proof of this result. (See [42] for an elementary proof.)

One of Edmonds’ key algorithmic insights for finding augmenting paths for
matchings was to “grow” an alternating forest. Let us illustrate an analogous
construction for the problem Ps.

Consider Figure 2, which is an example of the state of the algorithm for P,
at a point in its execution on a graph G. All the nodes of G are shown plus
all the edges in a current simple 2-matching M (again illustrated with thick
edges). Nodes are of three types, white, black, and striped. A few edges not
in M are shown; others are not shown. Note that {a,b,c,...,j} is the set of
deficient nodes. Consider the three black nodes n,r and u. Each of these nodes
is shown incident with three edges of G, two of which are in M. Note that each
such 3-edge subgraph has adjacent arrows that follow alternating paths, such

as ¢,r,t. Note also that if two such subgraphs share a node (see node t), then
these alternating paths can be combined to obtain a longer alternating path
(e.g., {q, 7, t,u,g}). Finally, note that these maximal alternating paths have one
endnode that is deficient, called the root, and that the edges in these paths
combine to yield trees. Let us consider all deficient nodes, other than ¢ and g,
to be one-node trees, where the single node is the root. Think of each root as
having a trivial alternating path to itself. Thus the white nodes are the set of
nodes for which we have identified an alternating path that is either trivial or
starts with an edge in M and ends with an edge not in M, where this final edge
is incident with a root.

The algorithm considers, one at a time, the edges not in the matching that
either connect two white nodes or connect a white node and a striped node. If
we consider an edge that connects two white nodes in different trees, then we
have identified an augmenting path connecting the roots of those trees and an
exchange is performed. For example, if edge oq is in the graph, then we have an
augmenting path from c to g.

If we consider an edge that connects two white nodes in the same tree,
then, in order to maintain a tree structure, we perform a “shrinking,” as in
Edmonds’ algorithm. (This idea of shrinking is another key concept in Edmonds’
algorithm.) For example, if the edge sv is in the graph, then we can shrink
the cycle with nodes s,v,u,t,r to a single new node. With this, we gain new
alternating paths for the shrinking black nodes (e.g., {r,s,v,u, g}) and the new
shrunk node becomes part of a slightly more complex forest structure.

Finally, if we consider an edge from a white node to a striped node, then we
can “grow” a tree. For example, suppose there is an edge bl. Then we make [a
black node and make k a white node. We consider this a new three-edge subgraph
built around the black node, but we only need to add one arrow following the
alternating path {k,[, b}, since we already have a path from m to c.

These are the main ideas in an Edmonds-style algorithm for P, (although
details have been left out, particularly involving shrunk nodes).

Our algorithm for P5 is an elaborated version of this algorithm for P,. Our
algorithm constructs a structure analogous to the forest for P,. This structure
includes three-edge subgraphs defined by black nodes, as for P. But it includes
a number of additional types, many having their own internal alternating paths.
These subgraphs, called substructures, are combined to give a forest-like structure
with longer, combined alternating paths. The types of substructures are described
with a list of graphs called models, where each substructure is isomorphic to
one of these models. We enumerate the models in Section 5.2 and give rules
for how the substructures can be combined in Section 5.3, before presenting the
algorithm.

As in the P, algorithm, our P3 algorithm considers, one by one, edges not
in the structure as we look for augmenting paths (using our altered definition),
nodes to shrink, and opportunities to grow the structure with new substructures.
(In fact, the algorithm employs a more general class of subgraphs that play
the role of these edges, which we call temporary substructures.) For example,
consider the graph in Figure 2 and the edge oq, as we did before. Note that

Figure 3: The role of tri-blossoms

performing an exchange on the alternating path from ¢ to g would create the
triangle o, p, q. So, instead of performing an exchange, we identify the triangle as
a new substructure, where node p becomes white with an arrow indicating the
alternating path {p, ¢, 0}. (Note that adding the edges pq and go to the forest
structure already constructed is not quite a forest; but this turns out to be easy
to deal with.)

Suppose we consider an edge iz in Figure 2. In the P, algorithm, we would
make z a black node and make w and y white nodes with arrows indicating
alternating paths from them to the root ¢. But in our P; algorithm, performing
an exchange along the path {y,z,i} would create the triangle w,x,i in the
new simple 2-matching. So, instead, we identify the triangle w,x,i as a new
substructure; we make w a white node and add an arrow indicating the alternating
path {w,x,i} and leave y unchanged. We also make z into a new type of node
called “grey,” indicating its special role. There are numerous other situations
similar to this that must be addressed in our algorithm for Ps.

The following example illustrates another difference in solving Ps over Ps.
Consider the graph in Figure 3. Let G; denote the graph with edges ab and
cd deleted, and let G4 denote the graph as shown. Observe that a maximum
cardinality simple 2-matching M in G; has value 9 (where M contains the central
triangle), whereas a maximum cardinality tri-free simple 2-matching in Gy has
value 8. This type of graph plays a key role in our theorems and algorithm. It
is an example of a general class of graphs we call tri-blossom clusters. These
graphs are a generalization of the well-known blossoms that play an analogous
role in the study of P,. These graphs also play a key role when we consider
2-factors. In particular, note that G5 has a 2-factor, but has no tri-free 2-factor.
In general, when there is a difference between the maximum cardinalities of a
simple 2-matching and a tri-free simple 2-matching in a graph, it is due to the
effect of one or more tri-blossom clusters.

1.3 Organization of the paper

The paper is organized as follows. In Section 2, we present an augmenting path
theorem that characterizes maximum cardinality tri-free simple 2-matchings. In
Section 3 we introduce the tri-blossom cluster, which plays a key role in several
of our main results. In Section 4 we present statements of Tutte-Berge-type and

Tutte-type theorems for tri-free simple 2-matchings and 2-factors, respectively.
Part of the proof of the Tutte-Berge-type theorem is given and the Tutte-type
theorem is seen to follow easily from the Tutte-Berge-type theorem. Section 5
contains definitions of the basic structures that are used in our algorithm for P
along with their key properties. The Main Algorithm for P3 and four subroutines
are given in Section 6. The validity of the algorithm is proved in Section 7. This
immediately implies proofs of the augmenting path theorem and the remainder
of the Tutte-Berge-type theorem. We also show in Section 7 that the algorithm
has polynomial-time complexity. Section 8 contains some acknowledgements.

2 An augmenting path theorem

In this section we state an augmenting path theorem for P;. It follows immedi-
ately from the validity of our algorithm for Ps (see Section 7).

Consider a graph G = (V, E) with a tri-free simple 2-matching M. A node v
is called deficient in M if it is incident with 0 or 1 edge of M. An alternating
path in G is defined as a sequence of edges {vyvs, vav3, U3V, . . ., Un—1Um } of G,
where: no edge occurs twice; and the edges are alternately in and not in M as
the sequence of edges is considered in order. Hence, a node may be traversed
more than once in an alternating path; in particular, the first and last node
may be identical. A single node is also considered to be a (trivial) alternating
path. (When convenient, we also describe alternating paths as a sequence of
nodes.) For a non-trivial alternating path P, the operation that yields the edge
set M’ = MAP is called an ezchange on P. (Note that A denotes the symmetric
difference operator and we treat P as a set of edges, hence an exchange simply
exchanges edges in and out of M along P. Note also that, in general, M’ need
not be tri-free; in fact, it need not even be a simple 2-matching.) If the endedges
of P are not in M and if M’ is a tri-free simple 2-matching, then P is called
an augmenting path for M. Observe that if P is an augmenting path, then the
endnodes are different and both deficient, or the endnodes are identical and
incident with no edge in M. In addition, |[M’'| = |M| + 1.

We have the following result, previously shown by Russell [42].

Theorem 1. Let G be a graph with a tri-free simple 2-matching M. Then M
has mazximum cardinality if and only if there exists no augmenting path for M.

3 Tri-blossom clusters

In this section we introduce the tri-blossom cluster, which is an important type
of graph that occurs in our main theorems and (implicitly) in the algorithm.
(See Figure 4, which contains three examples of tri-blossom clusters. See also
the graph in Figure 3, with the edges ab and cd deleted.) We also present an
associated inequality.

A connected graph G is called a tri-blossom cluster if it satisfies the following
properties:

T1:

T2:

T3:
T4:
T5:
Té6:
T7:

T8:

\ ; o—{) ;
O/ \O

2-tip tri-petal —,
e ge-petal

ﬁ }) 1-tip tri-petal ;/ f)
rlps/‘v o center - \\‘ f %

B

shared tlp

shared tip
-’

Figure 4: Three tri-blossom clusters

G is the union of connected, node-induced, edge-disjoint subgraphs each of
which is a center or petal and satisfies the properties below. (In Figure
4, centers are subgraphs (details not shown) contained inside the large
dashed circles.)

Each petal is either a single edge or a triangle.

Definition: A petal with one edge is called an edge-petal and a petal with
three edges is called a tri-petal.

Each center has at least two nodes.

No two centers have a common node.

A node in a center can be contained in at most one petal.

Each center shares nodes with an odd number of petals.

Each edge-petal contains exactly one node in a center; each tri-petal
contains either one node in a center or two nodes in different centers.

Definition: A node in a petal and not in a center is called a tip for that
petal. A tri-petal with one tip is called a 1-tip tri-petal; a tri-petal with
two tips is called a 2-tip tri-petal.

The subgraph obtained by deleting the tips is connected.

Observation: Properties T6 and T7 imply that a tri-blossom cluster must
have at least one center and at least one petal. Note that a node can be a tip in
more than one petal.

Observation: The special case of a tri-blossom cluster with one center and
only edge-petals, known as a blossom, plays an analogous role in the study of P;.

10

For a tri-blossom cluster B = (V, E), let n denote the number of nodes in
the centers of B and let pe, p1¢, and ps; denote the numbers of edge-petals, 1-tip
tri-petals, and 2-tip tri-petals of B, respectively.

Let M be a tri-free simple 2-matching for B. For a node v in B, we let
degnr (v), called the degree of v in M, denote the number of edges of M incident
with v. For a node v in a center of B, we define the value of M at v to be
degps(v). For an edge-petal or 1-tip tri-petal P, we define the value of M at P
to be degps(v), where v is the single tip of P. For a 2-tip tri-petal P, with tips
vy and v, we define the value of M at P to be degps(v1) + degps(v2). Hence the
value of M is at most 2 at a center node, at most 1 at an edge-petal, at most 2
at a 1-tip tri-petal, and at most 3 at a 2-tip tri-petal. These upper bounds are
called the targets for the corresponding center nodes and petals.

We want to derive an upper bound on) .y degrs(v). Let us first develop
such a bound for a simpler case. A tri-blossom cluster with a single center is
called a tri-blossom. (See the upper left graph in Figure 4.) Let B = (V, E) be a
tri-blossom with a tri-free 2-matching M.

Summing the targets over the petals and the nodes of the center, we obtain
the following upper bound:

> degar(v) < 2n + pe + 3pay (1)
veV

Note: As noted above, a tip for B can be in more than one petal. So, for
example, if a tip is in three edge-petals of B, then this tip contributes 3 to the
right hand side of expression (1).

Because B has an odd number of petals, p.+3pa; is odd. Since), degns(v)
is even, the following is a tighter upper bound:

> degar(v) < 2n + pe + 3pae — 1 (2)
veV

A tri-free simple 2-matching M is said to saturate a tri-blossom if inequality
(2) is satisfied at equality.

Observation: A tri-free simple 2-matching M saturates a tri-blossom B if
and only if the values of M at all the center nodes and petals are at their targets
except one, whose value is one below its target.

We next develop a similar bound for the more general tri-blossom clusters.

Let B = (V, E) be a tri-blossom cluster and let M be a tri-free 2-matching
for B. Let Cq,...,C}) be the centers of B, where k > 2. For each center C; we
construct a tri-blossom Bj/(C;), which is a subgraph of B, with center C; as
follows.

Let T be an edge-petal or a 2-tip tri-petal of B that shares a node with C;.
Then we make T a petal of the same type for By (C;). Let T be a 1-tip tri-petal
of B that shares nodes with centers C; and Cj. Let a, b, and c be the three

11

edges of T', where the edge c shares its endnodes with both C; and C}, the edge
a shares an endnode with C;, and the edge b shares an endnode with C;. Then
M contains at most two edges of T.

We next apply the following transformation; it creates two edge-petals from
T, one for By(C;) and one for By (C):

1. If M contains only ¢, make ¢ an edge-petal for B (C;) and b an edge-petal
for By (C;). Disregard a and b for By (C;) and disregard a and ¢ for
Bu(C;).

2. If M does not contain ¢, make a an edge-petal for By/(C;) and b an edge-
petal for By;(C;). Disregard b and ¢ for By/(C;) and disregard a and ¢
for BM (C])

3. If M contains a and ¢, make a an edge-petal for By;(C;) and ¢ an edge-
petal for By (C;). Disregard b and ¢ for By (C;) and disregard a and b
for BM (CJ)

4. If M contains b and ¢, make ¢ an edge-petal for By (C;) and b an edge-
petal for Bys(C;). Disregard a and b for By (C;) and disregard a and ¢
for Bar(Cy).

Observe that the resulting graphs Bjs(C;) are, indeed, tri-blossoms, hence,
each Bj/(C;) satisfies expression (2). Also, observe that the graphs By (C;)
contain all the edges of M. Thus, if we let n denote the total number of nodes
in the centers, and let k denote the number of centers, then, by summing the
expressions (2) over the B (C;), we obtain the following expression for the
tri-blossom cluster B:

> degar(v) < 20+ pe + 2p1e + 3par — k. (3)
veV

To see this, note that each 1-tip tri-petal in B that contains nodes from,
say, centers C; and C, becomes two edge-petals, one for By/(C;) and one for
By (Cj). Each of these edges contributes 1 to the corresponding right hand side
of expression (2) in the p. term for each of By (C;) and Ba(C;). In the right
hand side of expression (3), these contributions are replaced and combined in
the 2py¢ term.

A tri-free simple 2-matching M is said to saturate a tri-blossom cluster B if
inequality (3) is satisfied at equality.

Observation 1: A tri-free simple 2-matching M saturates a tri-blossom
cluster B if and only if M saturates each of the tri-blossoms By (C;).

We let Val(B) denote the quantity on the right hand side of expression (3)
for a tri-blossom cluster B.

12

4 A min-max theorem

In this section we state our min-max (or Tutte-Berge-type) theorem for tri-free
simple 2-matchings. We also prove that the max is less than or equal to the min.
Showing equality is more difficult. It is proved in Section 7 at the same time we
prove the validity of our algorithm.

For a graph G = (V, E) with V' C V, let §(V') denote the set of edges of G
with exactly one endnode in V’; let v(V’) denote the set of edges of G with both
endnodes in V'; let G(V') = (V',v(V")); let E(G) = E; let E[Vi, V5], for Vi, V5
disjoint, non-empty subsets of V', denote the set of edges with one endnode in
V1 and the other in V3; and let G — V'’ denote the graph obtained from G by
deleting the nodes in V' (together with all edges incident with a node in V).

For a graph G = (V,E),let U CV and W C V —U. Let T be a set of
pairwise edge-disjoint triangles in G(V — U), where each triangle contains one,
two, or three nodes in W. Let T3 denote the triangles of 7 that contain 3 nodes
in W.

Let C contain an arbitrary subset of the connected components of G(V —U —
W). For each C € C, consider the subgraph that is the union of C, the triangles
of T that share one or two nodes with C, and the remaining edges from C' to W
(with their endnodes). Let C* denote the collection of such subgraphs that are
tri-blossom clusters where the incident triangles of T are the tri-petals and the
edges from C to W, that are not in a triangle of T, are the edge-petals. Note
that the tips of all such petals are in W. Let CN(C*) denote the nodes in the
centers of the graphs in C* (i.e., the nodes of V'.— U — W contained in the graphs
of C*). Let R=V —U —W — CN(C*).

Example: Figure 5 illustrates a node partition U, W, CN(C*), R. As usual,
small circles illustrate nodes; in this example, the large circles with a dashed
border contain connected subgraphs. Edges incident with the nodes of U are not
shown. The five triangles in the figure are the set 7, where two of the triangles
are in T3. Observe that there are four connected components of G(V — U — W),
defined by the subgraphs: a; b and ¢; d and e; and f. Let us arbitrarily choose
C to contain the three connected components defined by a; b and ¢; and d and e.
Two of these connected components, defined by a, b, and ¢, yield two tri-blossom
clusters, which become C*. Note that the connected component defined by d
and e does not yield a a tri-blossom cluster because d and e are each incident
with an even number of petals. Thus, we have CN(C*) equal to the nodes in
the subgraphs a, b, and ¢, which leaves R equal to the nodes in the subgraphs
d, e, and f. If we had chosen the connected component f of G(V — U — W) to
also be in C, then we would have had a third tri-blossom cluster defined by f in
C* (and we would have the nodes of f in CN(C*) instead of R).

Select a set R* C W with the following properties: (1) each node of R*
occurs in exactly one triangle of 7 and that triangle contains no other node in
R*; (2) that triangle is in 73 or is a 2-tip tri-petal of a tri-blossom cluster in C*;
and (3) each node in R* is adjacent only to the other two nodes in its triangle

13

- f_'-\. *'_"\.
£

CN(C*) {a

\

SN

L
U
®

vz{,ﬂ\ ii---f?\i’f

f - " I

Figure 5: Node partition

of 7 and nodes in U U RU R*. For each r € R*, let T,. denote the triangle of
T that contains it and let r,r,, 7, denote the nodes of T,. Let C** denote the
tri-blossom clusters obtained by replacing each tri-petal in C* of the form T
with the edge-petal r,7,. Note that R* need not be uniquely determined.

Let 75* denote the triangles in 73 that do not contain a node in R*.

Example: In Figure 5 there are two nodes in R*. One is in a 2-tip tri-petal
of a tri-blossom cluster in C* and the other is in a triangle of 73. There are two
tri-blossom clusters in C**. One is obtained from the tri-blossom cluster defined
by a by replacing its tri-petal with an edge-petal obtained by deleting its node
in R*. The other is the same one as before, defined by b and c¢. There is one
triangle in 73 (the one furthest to the right).

Let U, W, T, CN(C*), and R* be a selection of nodes and triangles of G as
described above. We define the following partition of the edges of G.

e F is the set of edges incident with one or two nodes of U.
e F) is the set of edges in the tri-blossom clusters of C**.

e F5=79RUR*)UE[RUR*,V —U — (RUR*)].

e F, is the set of remaining edges: v(W — R*) — F».

The following definitions are closely based on the above partition. In partic-
ular, for any tri-free simple 2-matching M of G, we show, towards proving our
min-max theorem, that >, degrng, (v) < oy, for i =1,...,4 (see Proposition
1).

14

e a; =4|U|.

® (g = ZCEC** Val(C)

e a3 =2|RUR*|+ |E[RUR*,V —U — (RUR")]|.
® (y :2|E4|

as = |R*| + 2|75
Theorem 2. Let G be a graph. The maximum cardinality of a tri-free simple
2-matching equals the minimum value of

1
5(041 +oas+ag+ou—as)

taken over all choices of U, W, T, C, and R*, using the definitions given above.

Note: Suppose the set 7 is empty. Then R* is empty, a5 = 0, and the
statement of Theorem 2 reduces to the statement of a min-max theorem for
simple 2-matchings given in Schrijver [43]. (See Theorem 32.1 on page 562,
where we take b = 2, ¢ = 1, and we split the summation to obtain as + ag).

The following theorem follows immediately from Theorem 2. It is our Tutte-
type theorem.

Theorem 3. A graph G has a tri-free 2-factor if and only if
1
VI < 5(041 +ag + a3+ oy —as)

taken over all choices of U, W, T, C, and R*, using the definitions given above.

Example: Consider the graph in Figure 3. Let U = (), let W be the five
nodes at the bottom, and let 7 be the triangle in the middle. Let CN(C*)
denote the node set obtained by deleting the nodes in W. The triangles to
the left and right are each a center for a tri-blossom cluster; the triangle in
the middle is a 1-tip tri-petal for the cluster and the remaining four vertical
edges are edge-petals. Note that R = R* = (). We have a; = a3 = a5 = 0 and
as + ayg = 16 + 4. We see that the condition in Theorem 3 is violated since
|V| =11 ¢ 1(16 4 4). Hence this graph has no tri-free 2-factor.

We next state and prove the first step in proving Theorem 2.

Proposition 1. Let G be a graph. The mazimum cardinality of a tri-free simple
2-matching is at most the minimum value of

1
5((11 +as+az+ay—as)

taken over all choices of U, W, T, and R*, using the definitions given above.

15

Proof. Let M be a tri-free simple 2-matching for G. We show that

Z degp(v) <y + s +as + g — as
veV

. We begin by showing the following.
Claim 1. }_ . degyng, (v) < oy, fori=1,...,4.

Proof. Consider the case ¢ = 1. The number of edges of M in F; is clearly
maximized if each edge of M has one endnode in U and one endnode not in U,
and each node in U is incident with two edges in M. Hence,) .\ degnng, (v) <
4|U].

Consider the case i = 2. This follows immediately from our previous calcula-
tion that is summarized in expression (3).

Consider the case ¢ = 3. This follows from the observation that 2|R U R*| is
the maximum value of) _p . degrng, (v) and |[E[RUR*,V —U — (RUR*)]|
is the maximum additional contribution to), degnng, (v) if all the edges of
E[RUR*,V —U — (RU R*)] are also in M.

Consider the case ¢ = 4. This follows by simply assuming that all edges of
FE4 are in M. This concludes the proof of the claim.

O

Let us finish proving the proposition by considering the “correction factor” as.
Every triangle of 75" has all three of its edges contributing 2 to ay. However, only
two of the three edges can be in M, hence we subtract 2 from a; + as + az + ay
for each such triangle.

Finally, consider a node r € R* and its associated triangle 7;.. Suppose the
edge 7,7y is an edge-petal for a tri-blossom cluster C' € C**. In our count for ag
we count both rr, and rr, as being in M. If this is the case, then r,r, cannot be
in M. This then implies that C' cannot be saturated by M since the petal r,r
and the endnode of r,7}, in a center of C' are both below their targets of 1 and
2, respectively. Hence, the maximum value of), deganp(c)(v) is at least
2 less than Val(C) (since this sum is, of course, even) so, in this case, we can
subtract 2 from a1 + ag + a3 + a4 for each such node r. Suppose instead that
only one of 7 and rry is in M. Then it is possible that the), degynp(c)(v)
is Val(C) and we can subtract 1 from ag + as + a3 + ay for each such node. So
we subtract the minimum of these two possibilities with «5. Finally, suppose
the edge rqrp is in v(W — R*). In our count for az we count both rr, and rry
as being in M. If this is the case, then 7,7, cannot be in M so we can subtract
2 from oy + as + ag + a4 for each such node r. Conversely, suppose 7,7 is in
M. Then at most one of rr, and rr, can be in M. Since we counted 1 for each
of these edges in a3, we can subtract 1 from a1 + as + a3 + a4. So we again

subtract the minimum of these two possibilities with «as.
O

16

5 Structures for the algorithm

In this section we present some key concepts and structures used in the algorithm.
Our key concepts include the standard matching concept of shrinking, employed
in Edmonds’ classical matching algorithm [18], as well as the new concepts of
models and substructures.

5.1 Basic definitions

Let U be a non-empty subset of nodes of a graph G = (V, F) and let M be a
simple 2-matching for G. A graph G’ is obtained from G by shrinking U as
follows: Delete the nodes of U from V (with any incident edges) and add a new
node u; then, for each edge v'v € E, where v’ € U and v ¢ U, add to G’ an
edge wv. The node u is called a shrunk node of G’ and each edge in G’ has a
corresponding edge in G. Observe that G’ may have parallel edges. If there are
parallel edges between nodes v and v of G, we may refer to a specific such edge
as uv, when the context allows. We refer to the edges of G’ whose corresponding
edges of G are in M as the edges of G’ in M. In the course of the algorithm, we
perform this shrinking operation recursively.

Let G’ = (V', E’) be obtained from G by a sequence of shrinkings and let u
be a shrunk node in G’. Then the nodes of G that are deleted in the course of
shrinking u are referred to as the nodes inside u. Similarly, the edges of G that
connect two nodes inside u are said to be the edges inside u. We also refer to
the subgraph of G induced by the nodes and edges inside u as the graph inside
u. If wv is an edge in G', w'v’ is the corresponding edge in G, and u is shrunk,
then we refer to v’ as the endnode of uv inside w. All nodes and edges that are
not inside u are said to be nodes and edges outside wu.

During the main part of the algorithm we have a tri-free simple 2-matching
M in the original graph G and a graph G obtained from G by a sequence of
shrinkings. As we will see when proving the validity of the algorithm, the graph
inside each shrunk node induces a center of a tri-blossom cluster in G.

Each deficient non-shrunk node of G is called a root node of G. In addition,
each shrunk node of G with a deficient node inside is also called a root node of

G.

5.2 Models

A key to the algorithm is a collection of graphs, called models, which are depicted
in Figures 6 to 9 along with some key properties (based on the terminology and
conventions F1-F6 listed below). Think of each model as being obtained from a
graph with a tri-free simple 2-matching M™ by possibly shrinking some node
sets.

The following important points are made in Figures 6 to 9.

e Some depictions of a model can represent a few variations, where some
nodes are allowed to be either shrunk or not.

17

e Each model, and each of its variations, is either standard or temporary.

(This notion is important in the algorithm.) All models are standard except
where indicated in the figures.

e Most of the temporary models have two special nodes called endnodes.

In discussing models, we use the following terminology and conventions
(F1-F6) in reference to Figures 6 to 9.

Terminology and conventions for figures:

F1:

F2:

F3:

F4.

F5:

Fe6:

Shrunk nodes are illustrated with a large circle with a white interior and a
dashed border (such as node a in M3). Non-shrunk nodes are illustrated by
small circles. Each non-shrunk node is either white, black, grey, or striped.
(These types of nodes play various roles in the algorithm.) For example, a
in M2 is white; ¢ in M8 is black; ¢ in M13 is grey; and the nodes in M4
are striped.

Thick solid lines (such as ab in M2) illustrate edges in M* and thin solid
lines (such as ab in M6) illustrate edges not in M*.

Nodes with a grid interior (such as node ¢ in M5) and the dashed thick
lines incident with them (such as ac in M5) represent edges, but they are
not in the models and play no role in the definition of models. They are
explained in Section 5.4 with the definition of border edges and Proposition
2.

Some models have an illustration that represents several variations, where
only one variation is shown. In particular, in some cases, the white nodes
in the figures can be shrunk nodes. The details are discussed in Figures 6
to 9.

If v is a white or shrunk node in model graph N, then v is either an in-node
of N or an out-node of N (not both). Out-nodes are illustrated by an
arrow (solid or dashed) pointing away from the graph (i.e., not along an
edge of the graph). In-nodes are illustrated by a solid (non-dashed) arrow
pointing along a path in the graph; this path ends at an out-node.

Examples: Node a is an out-node in M2; b is an out-node in M5; b is
an out-node in M9; and e is an out-node in M17 and M20. Also, a is
an in-node in M5 with the arrow pointing along the path {a,b}; and a
is an in-node in M7 with the arrow pointing along the path {a,b,c}. An
out-node need not have such a path that ends at it.

The dashed thin arrows in models M17 and M20 play a special role and
are discussed below when substructures are introduced in Section 5.3. (See
substructure property S11.)

Models satisfy the following additional properties:

18

(I \\,
M1 M2 M3 M4
2w wiE) T L Ol £ b

M5 M6 M7

M1: A single white node.

M2: 0, 1, or 2 of the nodes can be shrunk. If two are shrunk, the model is
called temporary with endnodes a and b.

M3: Node b can be white or shrunk. The two edges shown are incident with
different nodes inside shrunk node a. This model is called temporary with
endnodes g and b.

M4: A cycle with at least 4 edges, all in M*. All nodes are striped.

M5: Node a can be white or shrunk.

M6: Node b can be white or shrunk.

M7: Node c must be white.

Figure 6: Models M1-MT7

P1: The inside structure of shrunk nodes is not specified except as follows.
The two edges connecting nodes a and b in M3 are incident with different
nodes inside a; in M18, the two edges connecting nodes b and c¢ are incident
with different nodes inside b and the two edges in M* incident with b are
incident with the same node inside b. In all other cases, if two edges are
incident with the same shrunk node (e.g., ab and ac in M7), then they are
incident with the same node inside that shrunk node.

P2: For each model, the illustrated white, black, grey, and striped nodes are
distinct.

5.3 Substructures

The algorithm constructs a collection of subgraphs of G, called the substructures
of G, say Si,...,Sn. Roughly speaking, the substructures in G are an edge-

19

M11

M8, M9, M10: Nodes a,b must be white in M10; otherwise g, b, and d can be
white or shrunk. If b is shrunk, in M9, then this model is called temporary

with endnodes b and d.
M11: 0, 1, 2, or 3 nodes can be shrunk. If three nodes are shrunk, this model is

called temporary with endnodes a and c.

M12: Node c must be white.
M13: At most one of @ and b is shrunk. Node cis grey.

Figure 7: Models M8-M13

20

M14:
M15:

M16:
M17:

M18:

M19:

M14

M17

M19

0, 1, or 2 of a and ¢ can be shrunk. If both nodes are shrunk, this

model is called temporary with endnodes a and c.

Node ¢ must be white.

Node a must be white. Node cis grey.
0, 1, or 2 of the nodes a and b can be shrunk. If both are shrunk,
this model is called temporary; a transformation is performed in
Step 2, part 2 of the the Main Algorithm. 0, 1, or 2 of the
nodes d and e can be shrunk.
Node a must be white; node d can be shrunk. The two edges
from c to b are incident with different nodes inside b.
At most one of a and b can be shrunk. At most one of d and e can

be shrunk.

Figure 8: Models M14-M19

21

a b

%é---?—?--lé

M24

M20: Node a can be shrunk. If it is shrunk, then this model is called
temporary; a transformation is performed in Step 2, part 2 of the
Main Algorithm. 0, 1, or 2 of the nodes d and e can be shrunk.

M21, M22, M23: Each model is a path in M*. The left and right nodes for
M21, M22, and M23 are grey/grey, grey/white, and white/white,
resp. All interior nodes are striped. M21 and M22 contain
20 striped nodes and M23 contains 21 striped node. The figure
illustrates three possibilities, each with two striped nodes.

M24: 0, 1, or 2 of the nodes g and b can be shrunk. This model is called
temporary with endnodes a and b.

Figure 9: Models M20-M24

22

disjoint collection of subgraphs of G, where each substructure is isomorphic to
a model. Pairs of substructures can share white, shrunk, or grey nodes. The
arrows from in-nodes to out-nodes (inherited from the corresponding models)
yield paths from white and shrunk nodes to roots. Later in the paper, we see that
these paths have corresponding alternating paths in GG. The algorithm performs
exchanges on these paths to increase the size of the current tri-free simple 2-
matching. As we see in substructure property S10, the substructures have a
corresponding tree structure, which has an analogous function to the alternating
trees in Edmonds’ algorithm [18] for matchings. The graphs G; in Figure 11, G3
in Figure 12, and G in Figure 13 illustrate collections of substructures. These
examples are discussed in more detail after we list a number of properties that
more precisely describe substructures.

Properties of substructures

S1: The substructures are pairwise edge-disjoint.
S2: Each node of G is contained in at least one substructure.
S3: Each edge of M in G is contained in a substructure.

S4: Each substructure S; in G is isomorphic to a model graph. (Recall that
the thick dashed edges and the nodes with a grid interior in Figures 6 to 9
are not part of the model graphs.) Each node in G has the same type in
each substructure that contains it and this type is in agreement with the
allowed types for each of the corresponding models; hence each node in G
has a well-defined type. Let e be an edge in a substructure S;. Then e is
in M if and only if the edge corresponding to e in the model for S; is in
the model’s simple 2-matching. The edges in a substructure are incident
with nodes inside shrunk nodes as in the corresponding model, according
to property P1 of models.

Definition: Each white node of a substructure S; is also called an in-node
of S; or an out-node of S; as determined by the corresponding node in
its model graph; and each in-node of S; has a path to an out-node as
determined by the corresponding path in its model graph.

Observation: Let P be the path from an in-node to an out-node in a
substructure. If the first node on P is white, then the first edge on P is in
M. If the last node on P is white, then the last edge on P is not in M.

S5: Each edge of G with each endnode white or shrunk is contained in a
substructure.

S6: A substructure with model M1 is a root and incident with no edge of M.

S7: If distinct substructures S; and S; share a node, then the node is shrunk,
white, or grey in both substructures.

23

S8:

S9:

S10:

S11:

S12:

S13:

Each grey node in G is contained in precisely two substructures, one has
model M13 or M16 and the other has model M21 or M22.

Observation: From the definition of the models (see Figures 6 to 9), the
black, grey, and striped nodes are all incident with 2 edges of M. Hence,
the non-shrunk roots are a subset of the white nodes of S1, ..., Si.

Each white root node or shrunk root node of G is an in-node in no
substructure. Each white non-root node or shrunk non-root node is an
in-node in precisely one substructure.

Observation: A white node or a shrunk node of G can be an out-node in
any number of substructures.

Definition: Construct the following digraph D = (V' A"). Let V' be the
set of white nodes and shrunk nodes in G and start with A’ empty. For
every non-root node u € V', let S; be the unique substructure in which
u is an in-node. Let v be the corresponding out-node in S; obtained by
following the arrow path in S; (obtained from the corresponding model).
Add to A’ an arc from u to v. Thus each arc in D has a corresponding
substructure .S; and path in G’; we call nodes u and v an in-node, out-node
pair in S;.

The digraph D is a directed forest (i.e., its underlying undirected graph is
acyclic). (By property S9, every node has at most one out arc, but, based
on this alone, the underlying graph could contain a cycle.)

Observation: We show in Section 5.4 that there exist alternating paths
in G associated with every directed path in D. They play an important
role in the algorithm in its search for augmenting paths. These paths
are analogous to the alternating paths defined by the tree structure in
Edmonds’ matching algorithm [18].

If a substructure has model M17, then D contains a directed path from the
node corresponding to e to the node corresponding to b (indicated by the
dashed arrow in Figure 8). Similarly, if a substructure has model M20 (see
Figure 9), then D contains a directed path from the node corresponding
to e to the node corresponding to a.

There are three ways two substructures can be combined by the above
rules that are prohibited; see Prl, Pr2, and Pr3 in Figure 10. Graphs Prl,
Pr2, and Pr3 contain the substructures with models M2, M5, and M6 (on
nodes b and u), respectively, combined with a substructure with model M8
or M9. In each case the nodes u, v, b induce a triangle in G.

In a substructure with model M9, the path in D from node b cannot
go to a. (This condition is enforced when substructures with model M9
are created in Subroutine 4. This condition plays a role in the proof of
Theorem 4 in Section 7 as it prevents the creation of a triangle in M by
an exchange along an alternating path. Also, looking ahead to definitions

24

Pr2
Pri L ! lu /

he . N

7
\I ~=7

Figure 10: Prohibited substructure combinations

7 M

later in this section, if a substructure S; with model M9 is temporary, then
an alternating path passing from d to b through S; would then traverse
the path {a, ¢, d}, thus using edge cd twice.)

Note: The next three properties of substructures are implied by the previous
properties. Though we do not make explicit use of them, they are stated here
for clarity.

e In a substructure with model M11, the path in D from ¢ can go to a or b,
OR the path in D from a can go to ¢, but not both (which would imply a
dicycle in D).

e In a substructure with model M14, the path in D from ¢ can go to a or b,
OR the path in D from a can go to ¢, but not both (which would imply a
dicycle in D).

e In a substructure with model M19, the path in D from node a can go to
d or e, OR the path in D from e can go to a or b, but not both (which
would imply a dicycle in D).

We next state a couple of definitions that make use of the above properties
of substructures.

Definition: A substructure is called standard or temporary in agreement
with the type of its corresponding model. Suppose S; is a substructure whose
model is temporary and has two endnodes, say x and y. Then the nodes of S;
that correspond to x and y are called the endnodes of S;.

Definition: For every non-root node v in D, there exists a unique directed
path to a root. (This follows from Properties S9 and S10.) We call this root the

root associated with v.

Note: When referring to nodes in a substructure, we often use the labels of
the corresponding nodes in the associated model.

Examples of substructures:

25

Graph G; contains the following substructures:
Nodes {a, b} induce a substructure with model M2.
Nodes {b,c,d,e} induce a substructure with model M8.
Nodes {d,f.g} induce a substructure with model M13.
Nodes {g,h,i} induce a substructure with model M22.
Nodes {b,f} induce a substructure with model M24.

Graph G: (with shrunk node v) contains the following
substructures:
Nodes {a,v} and {h,i} induce substructures with model M2.
Nodes {v,e} induce a substructure with model Mé.
Nodes {v,h} induce a substructure with model M5.

Figure 11: Substructures in a graph Gi, the digraph D for G1, and a shrinking
GQ on Gl

26

oo 'g o
O O/

k O/
D

Graph Gjscontains the following substructures:
Nodes {k,/} induce a substructure with model M2.
Nodes {k,m} induce a substructure with model M5.
Nodes {c,d,e, k} and {f,i,j,k} induce substructures with model M9.
Nodes {a,b,c} and {f,g,h} induce substructures with model M11.
Nodes {c,g} induce a substructure with model M24.

Graph G4 (with shrunk node v) contains the following substructures:
Nodes {e,v}, {v,j}, and {v,/} induce substructures with model M2.
Nodes {v,h} induce a substructure with model M3.

Nodes {v,m} induce a substructure with model M5.
Nodes {a,b,v} induce a substructure with model M11.

Figure 12: Substructures in a graph G35, the digraph D for GG3, and a shrinking
G4 on Gg

27

if
a b L= O

An gxample of G from the algorithm and the associated graph D. Nodes w, u, and v
of G are shrunk with the inside edges and nodes displayed.

Nodes {w,u,v} induce a temporary substructure with model M11.
Nodes {a,b}, {f, W}, {r.v}, and {z,v} induce substructures with model M2.
Nodes {b,w} induces a substructure with model M5.

Nodes {j,h,u} induce a substructure with model M13.

Nodes {g,h} induce a substructure with model M22.

Nodes {u,m} induce a substructure with model M6.

Nodes {v,t,x,y} induce a substructure with model M9.

Figure 13: Substructures in a graph G and the digraph D

28

Consider the graph G in Figure 11. It plays the role of G and contains the
substructures described in the figure, which satisfy the above properties.

In this example, all the nodes are non-shrunk, but some of the white nodes
could be shrunk as long as the properties for substructures are satisfied. In this
case, any subset of the white nodes could be shrunk, as long as at most one of
the white nodes in the M13 substructure is shrunk.

The graph D in Figure 11 is based on GG; and satisfies property S10.

As we see in the algorithm, the node set {b,c,d, f,g} can be shrunk. This
is indicated in graph G5 in Figure 11 by the dashed oval, which is the shrunk
node v. The new substructures obtained from this shrinking are described in
the figure.

This shrinking illustrates a key step in the algorithm. The reason this graph
can be shrunk is discussed in the algorithm.

Next, consider the graph Gs in Figure 12. It plays the role of G and contains
the substructures described in the figure.

In this example, all the nodes are non-shrunk, but any subset of the white
nodes could be shrunk, as long as the properties for substructures are satisfied.

The graph D in Figure 12 is based on G3 and satisfies property S10.

As we see in the algorithm, the node set {c,d, f, g,i,k} can be shrunk. This
is indicated in graph G4 in Figure 12 by the dashed oval, which is the shrunk
node v. The new substructures obtained from this shrinking are described in
the figure.

Finally, consider the graph G in Figure 13 with the associated graph D.
It is another illustration of how substructures can appear in the algorithm.
Noteworthy in this example are the three nodes w, u, v that induce a temporary
substructure with model M11.

5.4 Properties of shrunk nodes in G

Suppose we are running the algorithm with a graph G, a tri-free simple 2-matching
M, and a set of substructures that satisfy the above properties (S1-S13). In
this section, we make some definitions and state a few additional properties
that are maintained during the algorithm. These properties concern the shrunk
nodes and types of alternating paths through shrunk nodes. We then show how
these alternating paths can be used to build longer alternating paths through
the substructures. These longer paths are tracked in the algorithm and used to
construct augmenting paths.
We begin by listing two properties of shrunk nodes in the algorithm.

A1: Let v be a shrunk non-root node in G during the algorithm. Then every
node inside v is incident with two edges of M. (This follows from the
definition of root node.)

A2: Let v be a shrunk root node in G during the algorithm. Then there exists
a unique node inside v that is incident with exactly one edge of M. All
other nodes inside v are incident with two edges of M.

29

Definitions: Let v be a shrunk node in G. If v is an in-node in a substructure
S;, then the first edge from v along the path in S; to an out-node of S; is called
the base edge of v and the node inside v that is incident with this base edge is
called the base node of v. The one exception to this is if .S; has model M7. In this
case, we let edges ac and bc serve as the base edges for a and b, respectively. As
noted in the properties of substructures, if v is not an in-node in any substructure,
then it is a root. In this case, the unique deficient node (see Property A2) inside
v is its base node and it has no base edge.

Examples: In Figure 11, ce is the base edge and c is the base node for
shrunk node v in G5. In Figure 12, km is the base edge and k is the base node
for shrunk node v in G4. Suppose we delete the edge km and the node m in the
three graphs in Figure 12. Then node k is the base node for shrunk node v in G4
and it has no base edge. In Figure 13, Im is the base edge for shrunk node u, ek
is the base edge for shrunk node w, and pzx is the base edge for shrunk node v.

Our next property provides a bit more detail concerning the occurrence of
edges of M in a shrunk node.

A3: Let v be a shrunk node in G during the algorithm and let v’ be a non-base
node inside v. Then at most one of the two edges of M incident with v’ is
outside v.

We next state a property that says each shrunk node in the algorithm is one
of five types.

A4: Let v be a shrunk node in G during the algorithm. Let v’ denote the base
node of v and let v’z be the base edge of v, if it has one. Then v is one of
the following types.

Type 1: v is incident with two edges of M, both inside v, and v has a base
edge (which is not in M).

Type 2: v is incident with two edges of M, neither is inside v, and one is the
base edge.

Type 3: v’ is incident with two edges of M, where one is inside v and the other
is the base edge.

Type 4: v is incident with one edge of M, where this edge is outside v and v
has no base edge (hence v is a root).

Type 5: v is incident with one edge of M, where this edge is inside v and v
has no base edge (hence v is a root).

Examples: In Figure 11, the shrunk node v in Gs is of type 1. In Figure 12,
the shrunk node v in Gy is of type 2. In Figure 13, the shrunk node w is of type
1, the shrunk node w is of type 2, and the shrunk node v is of type 3. If we were
to delete the node m and incident edge km in Figure 12, then v would become

30

a shrunk node of type 4 and a root. If we were to delete the node x (and the
three incident edges) in Figure 13, then v would become a shrunk node of type
5 and a root.

We next present the notion of border edges and follow this with a few examples
and a proposition that describes their key properties. This explains the role of
the dashed thick edges in Figures 6 to 9.

Definition: Let S; be a substructure in G. An edge 2y’ of G is called a
border edge of S; if x’y’ € M, x’ is in S;, 3/ is not in S;, 'y’ is adjacent in G to
an edge in S;, and 2’ is not an in-node of the substructure that contains z'y’.

Examples of border edges: In Figure 11, consider the substructure in
G1 with model M8 that is induced by nodes b, ¢,d, e. The edges ab and df are
border edges for this substructure, but there is no border edge incident with
node e. Also, edge gh is a border edge for the substructure induced by nodes
d, f,g. Next, consider G3 in Figure 12. The edge kl is a border edge for the
substructure induced by nodes k, m and for the substructures induced by ¢, d, e, k
and f, 1,7, k. However, edge km is not a border edge of substructures ¢, d, e, k
and f,4,7,k since k is an in-node in substructure k, m. Note also that in G4
in Figure 12, edge ed is not a border edge of substructure k, m since it is not
adjacent to edge km in G.

The following proposition is proved in Section 7.

Proposition 2. Let S; be a substructure in G with model F. Let ' be a node
of S; and let x be the corresponding node in F. (Refer to Figures 6 to 9.)

1. If there is no dashed thick edge incident with x in the figure for F, then S;
has mo border edge at x’.

For the next two points, assume there is a dashed thick edge incident with
x in the figure for F.

2. If F is model M13 or M16, then x = ¢ (see Figures 7 and 8) and S; must
have a border edge at x’.

3. In all other cases, it is possible that S; has a border edge at x'.

We next introduce the notions of pendant edges and cross edges. As we see in
the algorithm, border edges can become pendant edges when a shrinking occurs.
(And later, when proving the algorithm works, we see that pendant edges become
edge-petals or contained in tri-petals of some tri-blossom clusters.)

Definitions: Let v be a shrunk node in G during the algorithm. Let G(v)
denote the subgraph of G induced by (1) the nodes and edges inside v; (2) the
two edges (and their endnodes) in each substructure with model M3 where v
plays the role of a (see Figure 6); (3) the base edge, if v has type 1; and (4)

31

all other edges in M with one endnode inside v and one outside v, with the
exception of the base edge when it is in M. (Note that the base edge is in M if
and only if v has type 2 or 3.) Given G(v), let us call an edge that satisfies (3)
or (4) a pendant edge of G(v). Let uv’ be a pendant edge with ¢’ inside v such
that u has degree 1 in G(v). An edge uv” of G is called a cross edge for G(v) if
it satisfies the following: it is not in M the node v” is inside v; and there is an
edge v'v” of G that was contained in a substructure when it first shrunk. Hence,
the nodes u,v’,v” form a triangle in G.

Examples of G(v), pendant edges, and cross edges: Consider the graph
G4 in Figure 11 with shrunk node v. Then G(v) contains the graph inside v
plus the pendant edges ab, hg, and ec. If there were an edge hf (clearly not in
M), it would be a substructure with model M24 and it would be a cross edge
for G(v). Similarly, if there were an edge ed or ac. Consider the graph G4 in
Figure 12 with shrunk node v. Then G(v) contains the graph inside v plus the
edges hg and hf (which are in a substructure with model M3), and the pendant
edges bc, ed, ji, and lk. Note that mk is not a pendant edge since it is a base
edge for this type 2 shrunk node.

We next state a property that says each shrunk node in the algorithm must
have certain types of alternating paths.

A5: Let v be a shrunk node in G during the algorithm. If v has type 1, let =
be the endnode of the base edge that is not inside v; otherwise, let = be
the base node. The algorithm maintains the following types of alternating
paths for all five types of shrunk node v.

Type 1: For each node u inside v, there exists an alternating path from u to
x in G(v) that starts with an edge in M and ends with an edge not
in M. In the case that v has type 2,...,5 and u is the base node of
v, then the alternating path is the trivial one consisting only of wu.

Type 2: Let uwv’ € M be a pendant edge of G(v), where v’ is inside v. Then
there exists an alternating path from u to z in G(v) that starts with
uv’ and ends with an edge not in M.

Type 3: Let uv’ be a pendant edge of G(v), where v’ is inside v, with a cross
edge uv”. Then there exists an alternating path from u to z in
G(v) Uuv” that starts with wv” and ends with an edge not in M.
Performing an exchange on this path leaves the triangle u,v’,v” with
exactly two edges in M.

Note: As defined above, we use the terms type 1, type 2, ... to refer to
varieties of alternating paths and shrunk nodes. It should be clear from the
context which situation we are referring to.

Examples of alternating paths: Consider shrunk node v in G5 in Figure
11: {b,c,e} and {g, f,b,c, e} are alternating paths of type 1; {h,g,d, f,b,c, e}

32

is an alternating path of type 2; and, if there were a cross edge ac, then
{a,¢,b, f,g,d, c,e} would be an alternating path of type 3. (Note that triangle
{a,b,c} ends up with two edges in M after an exchange on this path.) Similarly,
in G4 in Figure 12: {c¢,d, k} and {g, h, f,i, k} are alternating paths of type 1 for
v. Note that the alternating path of type 1 from ¢ contains the node h, which is
outside v, but is contained in G(v).

Let us point out that such alternating paths can, in some cases, include a
cycle in G.

Examples of alternating paths with cycles: For shrunk node v in G5 in
Figure 11, we have that {c,d, g, f,b, ¢, e} is an alternating path of type 1; and, if
there were a cross edge ed, then {e, d, c,e} would be an alternating path of type
3. For shrunk node v in G4 in Figure 12, we have that {l,k,1, f,h,g,¢,d, k} is
an alternating path of type 2.

Note that, in A5, a type 3 alternating path is not the same as a type 1
alternating path plus the edge uv”. Consider G in Figure 13: If there were a
cross edge zp, then its alternating path of type 3 would be {z,p, s, q,0,p}. Note
that this path is not the same as edge zp plus the alternating path of type 1
from p, which is simply the node p. If we were to perform an exchange along
the path {z, p}, (which would typically be continued to a root along the path
{p,x,y}) we would create a triangle in the updated M.

Definitions of longer alternating paths:

We next make use of the type 1, 2, and 3 alternating paths for shrunk nodes
(see Property Ab5) to define longer alternating paths through the substructures
and present some associated notation. Included are some special alternating
paths for the temporary substructures. These paths play an important role in
the algorithm, which searches for exchanges on alternating paths that increase
the size of the current tri-free simple 2-matching.

Let P* be a di-path in D from node u to node v. (For example, (with
different node labels) see the path {f,d,e} in D in Figure 11, the path {g, f, k}
in D in Figure 12, and the path {w,v,y} in D in Figure 13.) Let u; denote the
base node for u if it is shrunk, and let it denote w if it is white. Define v, similarly
for v. For each arc 2y in P consider the edges of G in the corresponding path
through the substructure that corresponds to xy. Let]5[)‘ be the path in G
defined by these sets of edges. For each shrunk node w of]5;‘7 different from wu,
do the following: Let z; be the endnode inside w of the edge of P* incident with
w and closer to u and let z; be the endnode inside w of the edge of f’;‘ incident
with w and closer to v, if such an edge exists; otherwise, we have w = v and we
let zo = vp. If 21 # 25 then extend the path }5;‘ through the shrunk node w from
21 to z9 using the appropriate interior path as implied by the properties defined
above (where the final edge is deleted if w has type 1); that is, use a type 1 or 2
path: if the edge of 157} incident with w and closer to u is not in M use the type

33

1 path, otherwise use the type 2 path. Note that if z; = 25 and the two edges of
ISU“ incident with w are both in M or both not in M, then we are extending ISU“
around a cycle inside w (as we discussed above). Let P¥ denote the extended
path in G just defined. Note that P! is a path in G from wu; to v,. Furthermore,
by the observation after Property S4 and the properties of alternating paths
through shrunk nodes, P* is alternating. Given P in D, if v is a root, then we
abbreviate P* with P“. Similarly, we refer to P*. Finally, let us extend this
notation as follows: If u is shrunk and a is a node inside u, we let P* denote the
type 1 path from a to the base of u plus the path P".

Additional examples of alternating paths: Consider the graphs in
Figure 13. We have, for example, P? is the di-path {b,w,v} in D. We have P? is
sequence of edges bw, wu, wv in G. And we have Pf)’ is the path {b,c,e, k,n,0,p}
in G. Similarly, we have P/ is the path {j,1,m} and P? is the path {o,n,p,z,y}.

We also define alternating paths for temporary substructures as follows. Each
of the cases below constructs an alternating path based on the two endnodes u
and v of the substructure. We denote this path P*¥. (An example is given for
temporary substructures with model M11.)

1. Consider a temporary substructure with model M2: Let a and b play the
roles of u and v, respectively. Let a; and b, be the base nodes of nodes
a and b, respectively. Consider the type 2 alternating path starting with
ab and then passing through a (where the final edge is deleted if a has
type 1). Similarly, consider the type 2 alternating path from ab through b.
Combine these to yield an alternating path from a; to by.

2. Consider a temporary substructure with model M3. Let a and b play the
roles of u and v, respectively. Let a’ be the endnode inside a of the edge of
the substructure not in M and let a; be the base node of a. If b is shrunk,
let &’ be the endnode inside b of the two edges ab and let b, be its base node.
Otherwise, let b = = b,. When node a is shrunk in the algorithm (from
a substructure with model M11 or M14), we define a special alternating
path for this situation. The path starts with ¥’a’ and can be taken to a.
If b is shrunk, add to this alternating path the type 1 alternating path
from b’ to b, inside G(b). This yields an alternating path from a; to bp.

3. Consider a temporary substructure with model M9: Let b and d play the
roles of w and v, respectively. Let b, be the base node of b. If d is shrunk,
let dj, be the base node for d, and let d’ be the endnode of cd inside d.
Otherwise, let d, = d. Consider the type 2 alternating path starting with
¢b and continuing inside G(b) to by (where the final edge is deleted if b has
type 1). Add to this the edge ¢d and, if d is shrunk, the type 1 alternating
path inside G(d) from d’ to d (where the final edge is deleted if d has type
1) to obtain an alternating path from dj to bp.

4. Consider a temporary substructure with model M11: Let a and c¢ play the
roles of u and v, respectively. Let ayp, by, and ¢, denote the base nodes

34

6

of a, b, and ¢, respectively. Consider the type 2 alternating path from ab
through b to b, (which contains a cycle inside G(b)); the type 2 alternating
path from bc through G(c) to ¢p; and the type 2 alternating path from
ab through G(a) to ap (where the final edge on the path through G(a) is
deleted if a has type 1; similarly ¢). Combine these to yield an alternating
path from ay to cp.

Example: Consider the temporary substructure u, v, w in G in Figure 13.
It has endnodes that are already labeled u and v. Then P"" is the path
{lvjv k? €, da c €, nvp}

. Consider a temporary substructure with model M14: Let a and ¢ play the

roles of u and v, respectively. Let a, and ¢, denote the base nodes of nodes
a and c. Consider the type 2 alternating paths from ac through G(a) and
through G(c) (where the final edge on the path through G(a) is deleted if
a has type 1; similarly for ¢). Combine these alternating paths to obtain
an alternating path from a; to ¢p.

. Consider the temporary substructures with models M17 and M20. These

situations are handled in Step 2, part 2 of the Main Algorithm. (In both
cases we treat edge ce as a substructure with model M24.)

. Consider a temporary substructure with model M24. Let a and b play

the roles of u and v, respectively. If node a is shrunk, let a; denote the
base node of a and let @’ denote the endnode of edge ab inside a. If a is
white (not shrunk), set aj, := a and @’ := a. Define b, and o’ analogously
for b. Consider the type 1 alternating paths from o’ to a, and from o’
to by (where, if a is shrunk and has type 1, the final edge on the path
through G(a) is deleted; similarly for b). Combine these with a'b" to yield
an alternating path from a; to by. An exception to this is if a and b play
the roles of u and v, respectively, in the definition of a type 3 alternating
path. That is, using the notation in that definition, suppose we have that
b = v is shrunk, and there is a node b” = v’ inside b such that b"a = v'u
is a pendant edge for G(b) = G(v), and ab’ = wv” is a cross edge for
G(b) = G(v); hence the nodes a,b”, b (equivalently, nodes u,v’,v”) form
a triangle in G. If ab’ is not also a cross edge from G(a), then combine
the type 3 alternating path from abd’ through G(b) to b, with the type 1
alternating path through G(a) from a’ to a; to obtain an alternating path
from ap to by. Proceed analogously if ab’ is a cross edge for G(a) and not
for G(b). If ab’ is a cross edge for both G(a) and G(b), use the two type 3
alternating paths.

The algorithm

In this section we present an algorithm for finding a maximum cardinality tri-free
simple 2-matching in a graph. The algorithm makes use of the structures defined
in the previous section. A proof of the algorithm’s validity is given in Section 7.

35

The Main Algorithm is given in Section 6.1. Various subroutines used in the
Main Algorithm are given in subsequent sections.

During the algorithm we have a simple graph G, a tri-free simple 2-matching
M in G, a graph G obtained from G by shrinking nodes (that satisfy properties
A1-A4), a set of substructures of G, say S1,...,Sm, that satisfy the properties
of substructures (S1-S13), and alternating paths through the shrunk nodes (that
satisfy property A5).

In general, the features of our algorithm mirror the features of Edmonds’
algorithm [18] for matchings. In Edmonds’ algorithm, a current matching is
maintained along with an alternating forest that has white, shrunk, and black
nodes. In a sequence of iterations, the algorithm seeks to perform shrinkings,
grow the forest, or perform an exchange on an alternating path that increases the
cardinality of the current matching. In our algorithm, we maintain a current tri-
free simple 2-matching. We also maintain a collection of substructures together
with the directed tree D, which serve as an analog of Edmonds’ alternating forest.
We perform shrinkings (in Subroutine 1). We grow (or modify) the substructures
(in Subroutines 2, 3, and 4). And we perform exchanges on alternating paths (in
the Main Algorithm) to increase the cardinality of our current tri-free simple
2-matching. However, all of these procedures are more complex for our problem.
For example, in Edmonds’ algorithm, when an edge is considered that connects
two white nodes and creates a cycle with the edges in the alternating forest,
a shrinking is performed. In our algorithm, the temporary substructures play
the role of this edge. However, when we consider a temporary substructure and
discover a “cycle” formed with the arcs in D, we may perform a shrinking or we
may modify the substructures.

Note: In the algorithm we use the notation for alternating paths defined on
page 33.

6.1 The Main Algorithm

Main Algorithm: Maximum cardinality tri-free simple 2-matching

Input: A simple graph G and a tri-free simple 2-matching M in G.
Output: A maximum cardinality tri-free simple 2-matching in G.

Step 0: If |[M| = |V, then output M; end. Otherwise, set the substructures
as follows: Let each node incident with no edge in M be a substructure with
model M1. Let each maximal path in M be a substructure with model M2 or
M23. Let each cycle in M be a substructure with model M4. Set G := G. For
each deficient node v, set P¥ := v.

Step 1 Consider the edges of G that (1) are not in M; (2) are not in a

substructure; and (3) have each endnode either white or shrunk. Make each
such edge into a substructure with model M24.

36

Step 2: Perform this step if there exists a temporary substructure; otherwise,
go to Step 3. (The models for temporary substructures and their endnodes are
defined in Figures 6 to 9.) Select one temporary substructure, call it Sy, as
follows: If possible, choose S; so that it does not have model M24. (This is
needed for cases Bl and B2 in Subroutine 2.) Otherwise, choose an S; with
model M24. Let u and v denote the endnodes of S;.

1. If Sy has model M24, run Subroutine 2 (on page 65). Upon return, if
a transformation was performed in the subroutine, go to Step 1. If a
transformation was not performed, skip below to part 3 of Step 2 of the
Main Algorithm.

2. If S; has model M17 or M20 we perform a transformation of S; as depicted
in Figures 14 and 15, respectively. To begin, convert the triangle abc to a
substructure with model M12 or M15, respectively; hence, in both cases,
we treat ¢ as a white node (see graphs Gs in the figures). In the first case,
let @’ be the endnode of edge ab inside a and let b’ be the endnode of ab
inside b. Let P* denote the type 2 alternating path through shrunk node
b that starts with ab and ends at node b’ (which includes a cycle inside b).
Set P¢:=cbUP*U P . In the second case, again let a’ be the endnode of
edge ab inside a. Set P¢ := caU P% . In both cases, treat ce as a temporary
substructure with model M24 with endnodes ¢ and e. Reset S; to be this
new temporary substructure with endnodes u := ¢ and v := e. (We allow
this at this point in the algorithm, even if there remain other temporary
substructures that do not have model M24.) Since, in both cases, u = ¢
and v = e do not satisfy the conditions for performing an exchange in Step
2, part 3, we will be performing a shrinking in Step 2, part 4. Thus we
anticipate this by treating dc as a substructure with model M5 in the new
graphs G5 (where the arrow from d shows its alternating path after the
shrinking). (This temporarily violates our properties of substructures, but
allows us to retain the subtree of D “above” node d along with all the
substructures that contain these nodes. These substructures are unaffected
by the shrinking.)

3. If endnodes u and v have different roots associated with them; or u and v
have the same root, the root is white (not shrunk) and incident with no
edges in M (i.e., the root is a substructure with model M1), and P* and
PV share only the root node: Let P = P*U P“’ U PV .

(*) Consider each substructure S; with model M14, M15, M16, or M20
that is in G where P contains an edge adjacent in G to edge ab and P
contains no edge of the triangle a,b, c. (In all these cases, observe that no
edge inside b is contained in P). Perform the following operation on P for
each S;:

Extension of P: Let P’ be the alternating path ac U cb U {the type
1 alternating path from the base node of b} (which extends around a

37

InG::
Nodes {a,b,c} induce a substructure with model M12.
Nodes {c,e} induce a substructure with model M24.
Nodes {d,c} induce a substructure with model M5 (since node ¢ will shrink).

Figure 14: Transformation of temporary substructure with model M17

InG::
Nodes {a,b,c} induce a substructure with model M15.
Nodes {¢,e} induce a substructure with model M24.
Nodes {d,c} induce a substructure with model M5 (since node ¢ will shrink).

Figure 15: Transformation of temporary substructure with model M20

38

Figure 16: Performing an extension of P in the algorithm

cycle inside b and ends with edge ba). Reset P to be the alternating path
obtained by combining P and P’.

For each shrunk node z in G, let N(z) denote the nodes that shrunk into
2 when x was shrunk (during an execution of part 4 of this step). Consider
the substructures with nodes in N(z) just before x was shrunk. Consider
each such substructure Sy, that is in G where P contains and edge adjacent
in G to edge ab and P contains no edge of the triangle a,b,c. As above,
perform an extension of P for each such Si. Similarly, apply the extension

of P procedure recursively for shrunk nodes in N (z).

If an extension of P was performed since the last pass through line (*),
then return to line (*).

Perform an exchange on the alternating path P to obtain an updated M.
(We augment the size of M.) Throw away the substructures, unshrink the
nodes, and go to Step 0 with the updated M.

Observe that, for each S; and S}, used for an extension of P, each triangle
a, b, c ends up having two edges in the updated M. Thus none of the edges
in this triangle can occur in a triangle of the updated M. This is used the
proof of the algorithm’s validity. Consider the following examples.

Example: Consider the graph G in Figure 13. Suppose we have chosen
the substructure u, v, w with model M11 as S;. Then u and v have different

39

roots (m and y, respectively). We perform an exchange on the alternating
path {m7 l7 j7 k7 €, C, d» e,n,p,x, y}

Example: Consider the graph in Figure 16. The large dashed oval is a
shrunk node b in G with the graph inside b shown as it was before b shrunk.
Shrunk node b is in a substructure with nodes a,b,c¢ and model M14.
Each black node is contained in a substructure with model M8 or M9, as
indicated by the arrows, both inside and outside the shrunk node b. (Note
that b shrunk when we considered edge gh, which was a substructure with
model M24. After b shrunk, edge fc became a substructure with model
M24 in Step 1 of the Main Algorithm. The substructure with nodes a, b, ¢
was then formed in a call to Subroutine 2, case B2, where edge ac was a
substructure with model M2.) The triangle o/, ¢ is another substructure
with model M14, contained inside b. The four edges of M with one endnode
inside b are substructures with model M2 that contain the shrunk node
b. Suppose we are just entering part 3 of Step 2 in the Main Algorithm
and that the condition of part 3 is satisfied. Suppose this graph depicts
part of the substructures of G at this time. Suppose the exchange contains
the subpath {e,d,a}. If we performed an exchange on P at this time, the
updated M would contain the triangle a,c,d. Hence, this step dictates
that we next perform an extension of P on the substructure a,b,c. The
path P becomes the alternating path: {a,c, f,g,h,i,a’,5,k, f,a}. (The
portion of this path inside b was determined when b was first shrunk (due
to edge gh).) Note that performing an exchange on this new P would
eliminate the triangle a, ¢, d from the updated M, but it would create a
new triangle a’, ¢/, inside b. This step then directs us to perform another
extension of P on the substructure a’, ¥, ¢’. Now, performing an exchange
on the new P eliminates the triangle o', ¢, from the updated M.

. Otherwise, run Subroutine 1. (We identify a new shrunk node.) Upon
return, go to Step 1.

Step 3: Search for an edge uv in G that satisfies the following: v is not in

M and not in a substructure; u is white or shrunk and v is grey or striped; and,
if v is grey, in a substructure with model M22, then that substructure contains
two or more edges. If such an edge does not exist, go to Step 4. Otherwise,
select one such edge uv, and perform 1 or 2 below.

1. If v is grey, run Subroutine 3. (We add/alter some substructures.) Upon

return, go to Step 1.

2. If v is striped, run Subroutine 4. (We add/alter some substructures.) Upon

return, go to Step 1.

Step 4: Search for a substructure with model M5 or M6, where nodes a

and b are shrunk. If there is no such substructure, go to Step 5. Otherwise,

40

select one such substructure and add a new edge a’b’ ¢ M to G, where o’ is an
arbitrary node inside a and ¥’ is an arbitrary node inside b. Hence, this new
edge has endnodes @ and b in G. Call this edge a substructure with model M24.
Run Subroutine 1 with this new edge playing the role of wv. (The subroutine
shrinks a and b together, with possibly some other nodes of G .) (Note that edge
a'b’ is shrunk into the new shrunk node that contains a and b.) Upon return,
remove the edge a'b’ from G. (It is contained in no alternating path through
the new shrunk node.) Go to Step 1.

Step 5: Output M. End.

6.2 Subroutine 1: Shrinking

Let us begin by describing the notation we use in Subroutine 1.

For each substructure .S;, let V(.S;) denote the nodes of G in S;. Given input
nodes v and v (the endnodes of our chosen temporary substructure S;), add an
edge uv to the undirected graph underlying D and let C' denote the set of nodes
of G in the resulting cycle. Then delete uv from D; the only purpose of adding
this edge to D is to identify C. (Recall that S; need not be a substructure with
model M24.) Let C(S;) := CNV(S;) for all S;.

Example: For the graph G; in Figure 11, let S; be the substructure bf
with model M24. Hence nodes b and f play the roles of endnodes v and v in
S;. Observe, based on adding an edge uv = bf to the graph underlying D,
that C' = {b,e,d, f}. If S; refers to the substructure of Gy with nodes {d, f, g},
then V(S;) = {d, f,g} and C(S;) = {d, f}. For the graph G5 in Figure 12,
let S; be the substructure cg with model M24. Hence nodes ¢ and ¢ play the
roles of endnodes v and v in S;. Then, from D, we see that C' = {¢,k, f, g}.
(Typically, the nodes in C, plus potentially some additional nodes, are shrunk in
the algorithm. We have a special situation in Gy in Figure 11. In this case we
produce a type 1 shrunk node and the node e is not shrunk. This is handled in
Subroutine 1*.)

For each substructure .S;, the nodes in V(S;) — C(S;) are partitioned into
Ext(S;) (the externally selected nodes of S;), Int(S;) (the internally selected
nodes of S;), and any remaining nodes. In addition, the nodes in C(S;) U Ext(.S;)
are either processed or unprocessed. These sets are denoted Proc(S;) and
Unproc(S;), respectively.

During a run of Subroutine 1, each substructure S; is considered iteratively.
Subroutine 1, using a call to Subroutine 1*, determines the nodes to add to
Ext(S;) and Int(S;). These are the nodes, together with C(S;), over all the
substructures, that are shrunk inside a new shrunk node at the end of the call
of Subroutine 1. (When proving the validity of the algorithm, we show that the
sets Ext(S;) and Int(S;) only grow as the S; are repeatedly processed.) Let us
call the final shrunk node v. As each S; is processed, we identify new alternating
paths of type 1 and a set of edges that could play the role of pendant edges for the

41

final G(v). (We say “could play” since the sets Ext(S;) and Int(S;), which will be
shrunk, are not finalized until the end of the subroutine.) A pendant edge at the
end of the subroutine has one endnode in C(S;)UInt(S;)UExt(S;) and the other
not in that set. The border edges for S; can serve as candidates for such edges,
although there can be other candidates in S; itself when C(S;)UInt(S;)UExt(S;)
does not include all the nodes of S;. These potential pendant edges are used to
identify the alternating paths of type 2. We also use the potential pendant edges
to identify the associated potential cross edges and the associated alternating
paths of type 3. When identifying the potential pendant edges and potential
cross edges in Subroutine 1*, we drop the adjective “potential” for expediency.

Note: Consider a substructure S; during an execution of Subroutine 1*,
where xy is a (potential) pendant edge with « in C(S;) U Int(S;) U Ext(S;). We
sometimes say that the type 2 alternating path for zy is “determined elsewhere”
in the subroutine. Immediately after the statement of Subroutine 1* there is
note that explains these references in more detail. The phrase appears in bold
in the subroutine to aid the reader.

Subroutine 1: Shrinking

Step 0: For each substructure S;, initialize: Unproc(S;) = C(S;) and
Proc(S;), Int(S;), Ext(S;) := 0.

Step 1: If this is the first pass through this step in the current call to this
subroutine and there exists a substructure S; with model M8 such that nodes a,
b, and d are in C(S;) (see Figure 7), then choose S;. (We will be identifying a
type 1 shrunk node with base node d. Figure 11 contains an example of this,
where the substructure with model M8 on nodes b, ¢,d, e in G; is shrunk (with
some other nodes). This forms the substructure ve with model M6 in G2, where
v is a shrunk node with type 1.) Otherwise, select a substructure S; that contains
a node in Unproc(S;).

1. Run Subroutine 1* to determine Int(S;), new alternating paths, and how
to shrink S;, depending on the situation. If more than one alternating
path is determined, for a node or edge, retain only the first one identified.
(This is an arbitrary choice, since all identified alternating paths are valid.)
After returning from Subroutine 1*, add the nodes in [C(S;) U Ext(S;)] N
Unproc(S;) to Proc(S;) and remove them from Unproc(S;).

2. If, in Subroutine 1*, a node was identified for Int(S;) that was not previ-
ously in Int(S;), do the following: For each such node z and all S;, where
j#iand z € V(S;), add = to Ext(S;) and to Unproc(S;).

3. If there exists a substructure S; with Unproc(S;) # 0, repeat Step 1 (of
Subroutine 1). Otherwise, go to Step 2 (of Subroutine 1).

42

Step 2: For each substructure S;, shrink C(S;) U Int(S;) U Ext(S;), retain
the alternating paths, and update the form of S; as determined in the last
consideration of S; in Subroutine 1*.

End.

As noted above, Subroutine 1* identifies alternating paths of types 1, 2, and
3 for nodes we are shrinking. In particular, when we add a node to Int(S;), we
identify a type 1 alternating path for that node. When we identify a pendant
edge, we identify a corresponding type 2 alternating path that starts with that
edge. And when we identify a cross edge for S; (which forms a triangle with a
pendant edge and one edge of S;), we identify a type 3 alternating path that
starts with the cross edge. We actually identify alternating paths to a root (with
a few exceptions, explained in the subroutine), since a shrunk node may later
shrink inside another shrunk node. Truncating these paths at the base edge for
type 1 shrunk nodes or, otherwise, at the base node, yields the paths of types 1,
2, and 3. For each case, we also specify how .S; is transformed when the shrinking
is performed in Step 2 of Subroutine 1. S; may entirely shrink, it may retain its
current type, or it may switch to one or more different types of substructures.

Note: In Subroutine 1*, when we reference P*, PY, or some variant of these
(such as P!), we assume u and v have been labeled so that these paths are well
defined, with respect to the labeling of the nodes in the corresponding models.

Examples: For the graph G5 in Figure 12, suppose we have selected, in Step
2 of the Main Algorithm, the substructure cg with model M24 as the temporary
substructure S; and we let v and v denote the endnodes, ¢ and g, of S;. We
next execute Step 2, part 4 of the Main Algorithm with a call to Subroutine
1. In the subroutine, suppose we first select the substructure with model M9
on nodes ¢, d, e, k as S;. Thus we have C = {¢, k, f,g}; C(S;) = {c¢, k}; and we
have Unproc(S;) = C(S;) = {c, k} and Proc(S;), Int(S;), Exzt(S;) := 0. We
next call Subroutine 1*. (Note that the node labels for each substructure type
in Subroutine 1* refer to the labels on the corresponding models. Hence, in
this example, we consider the case where nodes a and d are the only nodes in
C(S;)UExzt(S;).) Using the node labels for G3 in Figure 12, we add d to Int(S;)
and set P? to be the alternating path {d,c, g, h, f,i, P*}. We also determine
alternating paths for (potential) pendant edges Ik and ed and for (potential)
cross edges determined by these pendant edges. For example, the path for Ik is
{l,k,d,c,g,h, f,i,k, P*} and the path for cross edge ec would be {e,c,d, k, P*}.
We also note that, if this were our last consideration of this substructure in
Subroutine 1, then, in this substructure, we shrink nodes ¢, d, k and the remaining
edge ed becomes a substructure with model M2.

For another example, consider the graph G; in Figure 11. Suppose we have
selected, in Step 2 of the Main Algorithm, the substructure bf with model
M24 as S; and we let u and v denote the endnodes, b and f, of S;. Again, we
next execute Step 2, part 4 of the Main Algorithm with a call to Subroutine 1.

43

Observe that C = {b,e,d, f}. Note that in the first pass through Subroutine 1
we satisfy the special condition in Step 1, so we first choose the substructure
{b,¢,d, e} with model M8 as S;. Using the node labels for G; in Figure 11,
we add the node ¢ to Int(S;) and identify its alternating path {c,d, g, f,b, ¢, e}.
We note that alternating paths for (potential) pendant edges ab and fd are
determined elsewhere in the subroutine. For (potential) cross edge ac, we would
identify the alternating path {a,c,b, f, g,d,c,e}. Similarly for (potential) cross
edge fc. We note that ce becomes the base edge for a type 1 shrunk node, when
we perform the shrinking in Subroutine 1. We may next choose the substructure
{d, f, g} with model M13 as S; in Subroutine 1*. We add the node g to Int(S;)
and identify its alternating path {g, f, b, c,e}. We identify (potential) pendant
edge hg and identify its alternating path {h,g,d, f,b,c,e}. For (potential) cross
edge hf, we would identify its alternating path {h, f,g,d, c,e}; for (potential)
cross edge hd, we would identify its alternating path {h,d,c,e}; and so on.

Subroutine 1*: Shrinking details
Node labels refer to Figures 6 to 9.

Note: No substructure S; is shrunk or transformed during an execution
of this subroutine. Shrinkings and transformations are performed when the
algorithm returns to Subroutine 1 and Step 2 is performed.

Note: We frequently consider a (potential) pendant edge zy, where = €
C(S;) U Ext(S;). If x is shrunk, then (by Property A5) the type 2 alternating
path from zy has already been determined as well as all type 3 alternating paths
for cross edges z'y with 2’ inside z.

S; has model M1: Cannot happen.
S; has model M2 or M3:
e Suppose a (or b) is the only node in C(S;) U Ext(S;).
— S; retains its type.
e Suppose a and b are in C(S;) U Ext(S;).
— S; shrinks.
S; has model M4: Cannot happen.
S; has model M5:
e Suppose a (or b) is the only node in C(S;) U Ext(S;).

— S; retains its type.

44

e Suppose a and b are in C(S;) U Ext(S;).

— ca is a pendant edge.

x Path for pendant edge ca is determined elsewhere.
* For cross edge cb, use alternating path cbUba U P U P" U P".

— S; shrinks.
S; has model M6:
e Suppose a (or b) is the only node in C(S;) U Ext(S;).
— S; retains its type.
e Suppose a and b are in C(S;) U Ext(S;).

— c¢b is a pendant edge.

* For pendant edge cb, if b is white, use alternating path cbU P U
P U PY.
* For cross edge ca, use alternating path ca U P* U P** U P".
— S, shrinks.

S; has model MT:
e Suppose a (or b) is the only node in C(S;) U Ext(S;).
— S; retains its type.
e Suppose ¢ is the only node in C(S;) U Ext(S;).

— Add a and b to Int(S;).
— dc is a pendant edge.

x Alternating path for pendant edge dc is determined elsewhere.
* For cross edge db use alternating path dbU P°.
x For cross edge da use alternating path da U P®.

— S; shrinks.
e Suppose a and ¢ are the only nodes in C(S;) U Ext(S;). (Similarly for b
and c.)
— Add b to Int(S;).
— dc is a pendant edge.

* For pendant edge dc use alternating path dcU P* U P** U P".
* For cross edge db use alternating path dbU P°.
* For cross edge da use alternating path da U P®.

45

— S; shrinks.

e Suppose a, b, and ¢ are in C(S;) U Ext(S;). Note: It follows that a,b,c €
C(S;)-
— dc is a pendant edge.

* For pendant edge dc use alternating path dcU ca U PY U P" U
PP UbcU P©.

* For cross edge db use alternating path dbU PP.

* For cross edge da use alternating path da U P*.

— S; shrinks.
S; has model MS8:

e Suppose a, b, and d are in C(S;) U Ext(S;). (In this case, d would be
the lowest node in C, hence a, b, and d are in C(S;). This follows from
Proposition 8).

— For all substructures S; that contain d, remove d from C(S;).
— Add ¢ to Int(S;).

— Set P°:=caUP}UP" UP".

— dc becomes the base edge for a type 1 shrunk node.

x For cross edge da use alternating path da U P*. (Similarly for
cross edge db.)

— ea and fb are pendant edges.

x for pendant edges ea and fb, alternating paths are determined
elsewhere.

* For cross edge ec use alternating path ec U P¢. (Similarly for
cross edge fc.)

— S; switches to a substructure with model M6.
e Suppose a (or b or d) is the only node in C(S;) U Ext(S;).
— S; retains its type.

e Suppose a and d are the only nodes in C(S;) U Ext(S;). (Similarly for b
and d.)
— Add ¢ to Int(S;).
— Set P¢:=caUP}UP"UP".
— bc, ea, and gd are pendant edges.

* Alternating path for pendant edge bc is already defined.
* Alternating path for pendant edge ea is determined elsewhere.

46

*
*
*
*
*

For pendant edge gd use alternating path gd U P} U P*Y U PY.
For cross edge ec use alternating path ecU P°.
For cross edge gc use alternating path gc U P°.
For cross edge ba use alternating path ba U P°.
For cross edge bd use alternating path bd U P?.

— S; switches to substructure with model M5.

e a and b are the only nodes in C(S;) U Ext(S;) is not possible.

S; has model M9:

e Suppose a, b, and d are in C(S;) U Ext(S;).

— Add ¢ to Int(S;).
— Set P¢:=caUP}UP"UP".

— ea and gd are pendant edges.

*
*
*
*
*

Alternating path for pendant edge ea is determined elsewhere.
For pendant edge gd use alternating path gd U Py U P*Y U P".
For cross edge ec use alternating path ec U P¢.

For cross edge gc use alternating path gc U P¢.

S; shrinks.

e Suppose a (or b or d) is the only node in C(S;) U Ext(S;).

— S; retains its type.

e Suppose a and d are the only nodes in C(S;) U Ext(S;).

— Add ¢ to Int(S;).
— Set P¢:=caUP}UP"UP".

— be, ea, and gd are pendant edges.

*

* ¥ X X X %

For pendant edge be use alternating path be U ed U P,
Alternating path for pendant edge ea is determined elsewhere.
For pendant edge gd use alternating path gd U P} U P*Y U P".
For cross edge ec use alternating path ec U P€.

For cross edge gc use alternating path ge U P€.

For cross edge ba use alternating path ba U P®.

For cross edge bd use alternating path bd U P<.

— S; switches to substructure with model M2.

e a and b are the only nodes in C(S;) U Ext(S;) is not possible. (Because d
is not in C(S;) U Ext(S;), a must be the lowest node in C(S;) U Ext(S;),
for some j, on any di-path in D from a node in C to a root. Hence, the
di-path in D from b would have to go through a on the way to a root. But
this situation is ruled out by S13.)

47

e Suppose b and d are the only nodes in C(S;) U Ext(S;).

— Add ¢ to Int(S;).

— Set P¢ along cb: If b is shrunk, it is already determined; otherwise,
it is determined when ¢b is a pendant edge for another substructure
that contains b.

— ac and gd are pendant edges.

* For pendant edge ac the alternating path is determined: P®.

x For pendant edge gd: If d is white, use alternating path gdUdcUP€.
Note that this path is well-defined because we have the property
that P’ does not pass through ad. If d is shrunk, the alternating
path for gd is already determined.

* For cross edge ab use alternating path abU bc U cd U P?.
* For cross edge ad use alternating path ad U P?.
* For cross edge gc use alternating path gc U P°.

— S, switches to substructure with model M5 (based on pendant edge
ac).
S; has model M10:
e Suppose a, b, and d are in C(S;) U Ext(S;).

— Add ¢ to Int(S;).

— Set P¢ along ca: It is determined when ca is a pendant edge for
another substructure that contains a.

— gd is a pendant edge.

* For pendant edge gd use alternating path gd U dc U P°.
* For cross edge gc use alternating path gc U P°.
x S; shrinks.

e Suppose a is the only node in C(S;) U Ext(S;).

— The node ¢ becomes white.

— P¢ is determined when ca is a pendant edge for another substructure
that contains a.

— The edge ca becomes a substructure with model M5. The edge cb
becomes a substructure with model M2. The edge dc becomes a
substructure with model M24.

— Handle the case for b analogously.
e Suppose d is the only node in C'(S;) U Ext(S;).

— S; retains its type.

48

e Suppose a and d are the only nodes in C(S;) U Ext(S;).

— Add ¢ to Int(S;).

P¢: caU P} U P UP.
bc and gd are pendant edges.

* For pendant edge be use alternating path be U cd U P9,
For pendant edge gd use alternating path gd U dc U P°.
For cross edge ba use alternating path ba U P®.

*
*
* For cross edge bd use alternating path bd U P<.
* For cross edge gc use alternating path gc U P°.
S; switches to a substructure with model M2 on edge bc.

Handle analogously if b and d are the only nodes in C(S;) U Ext(S;).

e Suppose a and b are the only nodes in C(S;) U Ext(S;).

Note: The special case where v and v define a substructure with
model M24 with endnodes a and b was handled in Subroutine 2.

Node ¢ becomes a white node.

P¢: Determined when ca is a pendant edge for another substructure
that contains a.

The edge dc becomes a substructure with model M24. ca becomes
a substructure with model M5 and ¢b becomes a substructure with
model M2.

S; has model M11:

e Suppose a (or b) is the only node in C(S;) U Ext(S;).

S; retains its type.

e Suppose ¢ is the only node in C(S;) U Ext(S;).

— Note that bc becomes a pendant edge for the new shrunk node con-

taining c¢. The alternating path for bc through the new shrunk node
to a root is determined when bc is pendant for another substructure
that contains c. If the path in D from ¢ goes to b, then this path uses
the edge be twice, so it is not truly an alternating path. However, if
an exchange is performed at some point in the algorithm, we use only
the portion of this path from bc to the base node of ¢ (which may
further shrink within this substructure with model M11), which is
a type 2 alternating path. This portion is used only if S; becomes
temporary, in which case S; shrinks. So we truncate this alternating
path for bc to b or its base node, if it is shrunk.

— S; retains its type.

49

e Suppose a and b are the only nodes in C(S;) U Ext(S;).

— Nodes a and b shrink to produce a substructure with model M3.
Therefore, edge bc would not be a pendant edge for the new shrunk
node (by the definition of pendant edges). However, we must consider
the following: Suppose this new substructure with model M3 were
to be chosen as S; at some future point in Step 2 of the Main Algo-

rithm. The associated new alternating path Py? through this new

substructure is discussed under “additional examples of alternating
paths” in Section 5.4. The portion of P*? that begins with edge ca

is the subpath of ca U abU P U P*Y U P" that ends at the base node
of the new node we are shrinking here.
e Suppose b and ¢ are the only nodes in C(S;) U Ext(S;).

— Add a to Int(S;).
— S; shrinks.

e Suppose a and c are the only nodes in C'(S;) U Ext(S;).

— Add b to Int(S;).
— S; shrinks.

e Suppose a, b, and ¢ are in C(S;) U Ext(S;).
— S; shrinks.
S; has model M12:
e Suppose a (or b) is the only node in C(S;) U Ext(S;).
— S, retains its type.
e Suppose ¢ is the only node in C(S;) U Ext(S;).

— Add a and b to Int(S;).
— dc is a pendant edge.

x For pendant edge dc the alternating path is determined else-
where.

* For cross edge db use alternating path dbU P°.
x For cross edge da use alternating path da U P*.

— S; shrinks.
e Suppose a and b are the only nodes in C(S;) U Ext(S;).

— Add c to Int(S;).

50

— dc is a pendant edge.
* For pendant edge dc use alternating path dcUca UabU FPy' U
Py PY.
* For cross edge db use alternating path dbU PP.
* For cross edge da use alternating path da U P®.

— S; shrinks.
e Suppose a and c¢ are the only nodes in C(S;) U Ext(S;).

— Add b to Int(S;).
— dc is a pendant edge.
x For pendant edge dc the alternating path is determined else-
where.
* For cross edge db use alternating path dbU PP.
* For cross edge da use alternating path da U P®.

— S; shrinks.
e Not possible to have b and ¢ as the only nodes in C'(S;) U Ext(S;).
e Suppose a, b, and ¢ are in C(S;) U Ext(S;).

— dc is a pendant edge.
x For pendant edge dc the alternating path is determined else-
where.
* For cross edge db use alternating path dbU PP.
* For cross edge da use alternating path da U P*.

— S; shrinks.
S; has model M13:

e Suppose a is the only node in C(S;) U Ext(S;) and b is white; or suppose
b is the only node in C(S;) U Ext(S;) and a is white.

— S; retains its type.

e Suppose a is the only node in C(S;) U Ext(S;) and b is shrunk (hence a is
white); or suppose b is the only node in C(S;) U Ezt(S;) and a is shrunk
(hence b is white).

— Node ¢ becomes white.

— Suppose a is white and b is shrunk. Let b, be its base node. Consider
the type 2 alternating path from ab through b to by; let P* denote
this path minus the edge ab. Note that a is in a different substructure
from S;, say S;, that contains an edge will be shrinking and for which
ab is a pendant edge. Hence, when S; is considered in this subroutine,
an alternating path from ab to a root will be identified; call it P**.
Let P := cb, UP* U P**.

o1

— Suppose a is shrunk and b is white. Consider the extension of the
type 2 alternating path from ab through a to a root; call it P*. Note
that b is in a different substructure from S;, say S;, that contains an
edge will be shrinking and for which ab is a pendant edge. Hence,
when S; is considered in this subroutine, an alternating path from ab
through b and then through ¢ and a to a root will be identified; let
P** denote the portion of this path to b. Let P¢ := cb, UP* U P**.

— Triangle abc becomes a substructure with model M12.

— Update the substructure containing dc with ¢ white.
e Suppose a and b are the only nodes in C(S;) U Ext(S;).

— Add ¢ to Int(S;).
— Set P¢:=cbU P UP" UP".
— dc is a pendant edge.

* For pendant edge dc use alternating path dcU ca UabU P* U
Py Pv.

* For cross edge db use alternating path dbU P°.

x For cross edge da use alternating path da U P®.

— S; shrinks.
S; has model M14:
e Suppose a (or b or ¢) is the only node in C(S;) U Ext(S;).
— 5, retains its type.
e Suppose a and b are the only nodes in C(S;) U Ext(S;).

— Nodes a and b shrink to produce a substructure with model M3.
Therefore, edge ac would not be a pendant edge for the new shrunk
node (by the definition of pendant edges). However, we must consider
the following: Suppose this new substructure with model M3 were
to be chosen as Sy at some future point in Step 2 of the Main Algo-
rithm. The associated new alternating path P2 = through this new
substructure is discussed under “additional examples of alternating
paths” in Section 5.4. The portion of PYY that begins with edge cb

is the subpath of cb U B} U P*Y U PV that ends at the base node of
the new node we are shrinking here.

e Suppose b and ¢ are the only nodes in C(S;) U Ext(S;).

— Add a to Int(S;).
— S; shrinks.

92

e Suppose a and ¢ are the only nodes in C(S;) U Ext(S;).

— Add b to Int(S;).
— S; shrinks.

e Suppose a, b, and ¢ are in C(S;) U Ext(S;).
— S; shrinks.
S; has model M15:
e Suppose a (or b) is the only node in C(S;) U Ext(S;).
— 5, retains its type.
e Suppose ¢ is the only node in C(S;) U Ext(S;).

— Add a and b to Int(S;).
— dc is a pendant edge.

* For pendant edge dc the alternating path is determined else-
where.

* For cross edge db use alternating path dbU P°.

% For cross edge da use alternating path da UacU cbU P® (where
P? is from the endnode of cb inside b).

— S; shrinks.
e Suppose a and b are the only nodes in C(S;) U Ext(S;).

— Add ¢ to Int(S;).
— dc is a pendant edge.

* For pendant edge dc use alternating path deUcbU P U P** U P,
* For cross edge db use alternating path dbU PP.

* For cross edge da use alternating path da U ac U cbU P° (where
P? is from the endnode of cb inside b).

— S; shrinks.
e Suppose a and ¢ are the only nodes in C(S;) U Ext(S;).
— Add b to Int(S;).

— dc is a pendant edge.

* For pendant edge dc the alternating path is determined else-
where.

* For cross edge db use alternating path dbU PP.

]

% For cross edge da use alternating path da UacU cbU P® (where
P? is from the endnode of cb inside b).

— S; shrinks.
e Not possible to have b and ¢ as the only nodes in C(S;) U Ext(S;).
e Suppose a, b, and ¢ are in C(S;) U Ext(S;).

— dc is a pendant edge.

* For pendant edge dc the alternating path is determined else-
where.

* For cross edge db use alternating path dbU PP.

* For cross edge da use alternating path da U acUcU P’ (where
P? is from the endnode of cb inside b).

— S; shrinks.
S; has model M16:
e Suppose b is the only node in C(S;) U Ext(S;).
— S; retains its type.
e Suppose a is the only node in C(S;) U Ext(S;).

— Node ¢ becomes white.

— Alternating path for ¢: Path starting with ca is determined when ca
is a pendant edge for another substructure that contains a.

— Triangle abc becomes a substructure with model M15.

— Update the substructure containing dc with ¢ white.
e Suppose a and b are the only nodes in C(S;) U Ext(S;).

— Add ¢ to Int(S;).
— Set P¢:=caUP}UP"UP".
— dc is a pendant edge.

* For pendant edge dc use alternating path deUcbU P U P* U P,
* For cross edge db use alternating path dbU P°.

% For cross edge da use alternating path da UacU cbU P® (where
P? is from the endnode of cb inside b).

— S; shrinks.
S; has model M17:

e Suppose a (or b or d or e) is the only node in C(S;) U Ext(S;).

o4

— S; retains its type.

e Suppose a and b are the only nodes in C(S;) U Ext(S;).

— Add ¢ to Int(S;).
— Set P¢:=cbU P UP" UP".
— dc is a pendant edge.

*

*

*

For pendant edge dc use alternating path deUcaUabU P UP* UP".
Reroute all previously defined alternating paths, that used dcUce,
along this new path.

For cross edge db use alternating path dbU PP.

For cross edge da use alternating path da U P?.

— Edge ce is deleted and nodes a, b, and ¢ shrink to a new node with
dc as a substructure with model M5.

e Suppose d and e are the only nodes in C'(S;) U Ext(S;).

— Add ¢ to Int(S;).
— Set P¢:=cdU P} UP" UP".
— be, fd, and ge are pendant edges.

*

*

*
*
*
*

For pendant edge be: If e is shrunk, let ¢ be the endnode of
ce inside e. Otherwise, let ¢/ = e. Use the alternating path
be U ce/ U P . If the path in D from e goes to b, then this path
uses the edge bc twice, so it is not truly an alternating path.
However, if an exchange is performed along this path at some
point in the algorithm, we use only the portion of this path from
be to the base node of the new node that we shrink (to create
a substructure with model M11 (see the end of this case); this
node may further shrink within this substructure with model
M11). This is a type 2 alternating path. This path is used only
if the new substructure with model M11 becomes temporary in
which case the entire substructure shrinks. So we truncate this
alternating path for bc to b or its base node, if it is shrunk.

For pendant edge fd, alternating path is determined else-
where.

For pendant edge ge use alternating path ge U P* U P“* U P".
For cross edge bd use alternating path bd U P?.

For cross edge fc use alternating path fcUecd U P} U P*’ U PY.
For cross edge gc use alternating path gc U P¢.

— Triangle abc becomes a substructure with model M11.

e Suppose b and e are the only nodes in C(S;) U Ext(S;) and a is white.

%)

— ge is a pendant edge. Alternating path is determined elsewhere.

— With shrinking of nodes b and e, this becomes a substructure with
model M18.

e Suppose b and e are the only nodes in C(S;) U Ext(S;) and a is shrunk.

— Add a and ¢ to Int(S;).

— Let P* be the alternating path through a starting with pendant edge
ab. Set P°:=cbU P} UP"™ U PP Uba UP*. (Note that b has to be
the bottom node of the cycle C.)

— dc and ge are pendant edges.

Alternating path for dc equals P?.

For pendant edge ge use alternating path ge U ec U P°.
For cross edge de use alternating path de U P¢.

For cross edge db use alternating path dbU P°.

*
*
*
*
x For cross edge da use alternating path da U P®.
*

With shrinking of nodes a, b, ¢, and e, this becomes a substructure
with model M5 based on edge dec.

e Suppose b, d, and e are the only nodes in C(S;) U Ext(S;).

— Add a and ¢ to Int(S;).

— Set P¢:=cdU P} UP" UP".

— fd and ge are pendant edges.

For pendant edge fd use alternating path fdU P} U P“’ U PY.

*
* For pendant edge ge use alternating path ge U P* U P*¥ U P".
* For cross edge fc use alternating path fcU P°.
* For cross edge gc use alternating path gc U P°.
— S, shrinks. (Note that the nodes along the path in D from e to a are
on C and also shrink.)
e Suppose a, b, and e are the only nodes in C(S;) U Ext(S;).

— Add ¢ to Int(S;).
— Set P¢:=cbU P UP*" UPY.
— dc and ge are a pendant edges.

* Alternating path for pendant edge dc equals P<.

x For pendant edge ge: Alternating path is determined else-
where.

* For cross edge de use alternating path de U P} U P“" U P".
* For cross edge db use alternating path dbU PP.

96

x For cross edge da use alternating path da U P®.
* For cross edge gc use alternating path gc U P°.

— Nodes a, b, ¢, and e shrink. dc becomes a substructure with model
Mb5.
e Suppose a, b, d, and e are the only nodes in C(S;) U Ext(S;).

— This case is handled as was the case that b, d, and e are the only nodes
in C(S;) U Ext(S;) (except there is no need to add a to Int(S;).)

S; has model M18:
e Suppose b (or d) is the only node in C(S;) U Ext(S;).
— S; retains its type.
e Suppose a is the only node in C(S;) U Ext(S;).

— Add b and ¢ to Int(S;).

— Let by be the base node of b. Let P* be the type 2 alternating
path starting with pendant edge ab and ending at b,. Let P** be
the alternating path to a root starting with pendant edge ab for
shrinking node a (which is determined when ab is pendant for another
substructure that contains a). Set P¢ := cb, UP* U P**.

— dc and gb are pendant edges.

For pendant edge dc, the alternating path equals P?.
For pendant edge gb, the alternating path is already determined.

*
*
* For three cross edges from d, use existing paths from endnodes.
* For cross edge gc use alternating path gc U P°.

— S; becomes a substructure with model M5 based on edge dc.
e Suppose a and b are the only nodes in C(S;) U Ext(S;).

— Add ¢ to Int(S;).
— Let by be the base node of b. Set P¢ := cb, U P* U P** U P,
— dc and gb are pendant edges.

For pendant edge de, the alternating path equals P<.
For pendant edge gb, the alternating path is already determined.

*
*
* For three cross edges from d, use existing paths from endnodes.
*

For cross edge gc use alternating path ge U P€.

— S; becomes a substructure with model M5 based on edge dc.

e Suppose b and d are the only nodes in C(S;) U Ext(S;).

o7

— Add a and ¢ to Int(S;).
— Set P¢:=cdU P} UP" UP".
— fd and gb are pendant edges.

* For pendant edge fd, the alternating path is determined else-
where.

* For pendant edge gb, the alternating path is already determined.

* For cross edge fc use alternating path fcU P°.

* For cross edge gc use alternating path gc U P°.

— S; shrinks.
e Suppose a, b, and d are the only nodes in C(S;) U Ext(S;).

— This case is handled as was the case that b and d are the only nodes
in C(S;) U Ext(S;) (except there is no need to add a to Int(S;).)

S; has model M19:

e Suppose a is the only node in C(S;) U Ext(S;) and b is white (or vice
versa). Or suppose e is the only node in C(S;) U Ext(S;) and d is white
(or vice versa).

— 5, retains its type.
e Suppose a is the only node in C(S;) U Ext(S;) and b is shrunk.

— Make ¢ a white node.

— Let P* be the type 2 alternating path starting with ab for shrunk
node b. Let P** be the alternating path to a root starting with ba
for shrinking node a (which is determined when ab is pendant for
another substructure that contains a). Set P° := c¢b UP* U P**.

— S; becomes two substructures: abc has model M12 and cde has model
M11.

e Suppose b is the only node in C(S;) U Ext(S;) and a is shrunk.

— Make c a white node.

— Let P* be the type 2 alternating path starting with ab for shrinking
node b (which is determined when ab is pendant for another sub-
structure that contains b). Let P** be the alternating path to a root
starting with ba for shrunk node a. Set P¢ := ¢b UP* U P**.

— S; becomes two substructures: abc has model M12 and cde has model
M11.

e Suppose e is the only node in C(S;) U Ext(S;) and d is shrunk; or suppose
d is the only node in C(S;) U Ext(S;) and e is shrunk. Handle as for the
previous two cases.

98

e Suppose d and e are the only nodes in C'(S;) U Ext(S;).

— Add c to Int(S;).
— Set P¢:=cdU P} UP" UP".
— bc is a pendant edge.

* For pendant edge bc: Use path bcUceUedU P} U P* U Py, If
this path contains bc a second time, an exchange on the entire
path is not well-defined. In this case, if an exchange is performed
at some point in the algorithm, we only use the portion of this
path from bc to the base node of the new node that we shrink,
which is a type 2 alternating path, plus, possibly, an additional
portion no further than b; these portions are well-defined and
used only if the remaining substructure (with model M11, see
below) becomes temporary. We determine the full path in case
the new shrunk node shrinks further and the new shrunk node
still has model M11.

* For cross edge bd, use alternating path bd U P?.
x For cross edge be, use alternating path be U P¢.

— Triangle abc becomes a substructure with model M11.

e Suppose a and b are the only nodes in C(S;) U Ext(S;). Handle as for the
previous case.

e Suppose b and e are the only nodes in C'(S;) U Ext(S;) and a is white.
— ab is a new pendant edge if b is white; de is a new pendant edge if e
is white.

* Alternating paths for ab and de are determined when they are
pendant edges for substructures with edges not in S; that contain
b and e, respectively.

— S; becomes two substructures: de becomes a substructure with model
M2 and the remainder becomes a substructure with model M18.

e Suppose b and e are the only nodes in C'(S;) U Ext(S;) and a is shrunk.

— Add a, ¢, and d to Int(S;).

— Let P* be the type 2 alternating path starting with ab for shrinking
node b (which is determined when ab is pendant for another sub-
structure that contains b). Let P** be the alternating path to a root
starting with ba for shrunk node a. Set P¢ := cb UP* U P**.

— S; shrinks.

e Suppose a and d are the only nodes in C(S;) U Ext(S;). Handle as for the
previous two cases.

99

e Suppose a and e are the only nodes in C(S;) U Exzt(S;) and b and d are
white.

— ¢ becomes a grey node and edge ce is removed from the substructures.

— ba and de are pendant edges.

x Alternating paths for ba and de are determined when they are
pendant edges for other substructures containing a and e, respec-
tively.

— S; becomes three substructures: abc becomes a substructure with
model M13; ¢d becomes a substructure with model M22; de becomes
a substructure with model M5.

e Suppose a and e are the only nodes in C(S;) U Ext(S;) and b and/or d is
shrunk.
— Add b, ¢, and d to Int(S;).

— Suppose b is shrunk. Let P* be the type 2 alternating path starting
with ab for shrunk node b. Let P** be the alternating path to a root
starting with ba for shrinking node a (which is determined when ab
is pendant for another substructure that contains a). Set P¢ := cb
UP* U P**. If b is white, use analogous path starting with cd.

— S; shrinks.
e Suppose b, d, and e are the only nodes in C(S;) U Ext(S;).

— Add a and c to Int(S;).
— Set P¢:=cdU P} UP" UP".
— S; shrinks.

e Suppose a, b, and d are the only nodes in C(S;) U Ext(S;). Handle as for
the previous case.

e Suppose a, d, and e are the only nodes in C(S;) U Ext(S;).

— Add b and ¢ to Int(S;).
— Set P¢:=cdU P} UP"“ UP".
— S; shrinks.

e Suppose a, b, and e are the only nodes in C(S;) U Ext(S;). Handle as for
the previous case.

e Suppose a, b, d, and e are the only nodes in C(S;) U Ext(S;).
— Add c to Int(S;).
— Set P¢:=cdU P} UP" UP".

60

— S; shrinks.
S; has model M20:
e Suppose a (or b or d or e) is the only node in C(S;) U Ext(S;).
— S; retains its type.
e Suppose a and b are the only nodes in C(S;) U Ext(S;).

— Add ¢ to Int(S;).
— Set P°:=caUabU P UP" UP".
— dc is a pendant edge.

* For pendant edge dc use alternating path deUcbU P U P** U P".
* For cross edge db use alternating path dbU P°.
* For cross edge da use alternating path da U acU cbU PP,

— Edge ce is deleted and nodes a, b, and ¢ shrink to a new node with

dc as the edge in a substructure with model M5.

e Note that it is not possible that b and e are the only nodes in C(S;)UEzt(S;).
If b and e are in C(S;) U Ext(S;), then a must also be in C(S;) U Ext(S;).

e Suppose d and e are the only nodes in C'(S;) U Ext(S;).

— Add ¢ to Int(S;).
— Set P¢:=cdU P} UP" UP".
— ac, fd, and ge are pendant edges.

* For pendant edge ac use alternating path ac U ce U P°.
Alternating path for fd is determined elsewhere.
For pendant edge ge use alternating path ge U P* U P** U P".

*
*

* For cross edge ad use alternating path ad U P?.
*x For cross edge fc use alternating path fcU P¢.
%

For cross edge gc use alternating path gc U P¢.

— Triangle abc becomes a substructure with model M14.
e Suppose a and e are the only nodes in C(S;) U Ext(S;).

— Add b and ¢ to Int(S;).
— Set P¢:=caUP}UP"UP".
— dc and ge are pendant edges.

* Alternating path for dc is already determined.
x Alternating path for ge is determined elsewhere.
* For cross edge db use alternating path dbU P°.

61

* For cross edge de use alternating path de U P¢.
* For cross edge da use alternating path da U acU cbU PP.
* For cross edge gc use alternating path gcUca U P* U P** U P".

— With shrinking of nodes a, b, ¢, and e, this becomes a substructure
with model M5 based on the edge dc.
e Suppose a, d, and e are the only nodes in C'(S;) U Ext(S;).

— Add b and ¢ to Int(S;).
— Set P¢:=cdU P} UP" UP".
— fd and ge are pendant edges.

* Alternating path for fd is determined elsewhere.
* For pendant edge ge use alternating path ge U P* U P*Y U P".
* For cross edge fc use alternating path fcU P¢.
x For cross edge gc use alternating path gc U P¢.
— S, shrinks. (Note that the nodes along the path in D from e to a are
on C and also shrink.)
e Suppose a, b, and e are the only nodes in C(S;) U Ext(S;).

— Add ¢ to Int(S;).
— Set P°:=caUabU P UP" UP".

— dc and ge are pendant edges.

*

Alternating path for pendant edge dc equals P?.

*

For pendant edge ge: Alternating path is determined else-
where.

* For cross edge de use alternating path de U P¢.
* For cross edge da use alternating path da U acU cbU PP.
* For cross edge db use alternating path dbU P°.
x For cross edge gc use alternating path gc U P¢.

— Nodes a, b, ¢, and e shrink. dc becomes a substructure with model
M5.

e Suppose a, b, d, and e are the only nodes in C(S;) U Ext(S;).

— This case is handled as was the case that a, d, and e are the only
nodes in C(S;)UExt(S;) (except there is no need to add b to Int(S;).)

S; has model M21, M22, or M23:

62

a b c
Case 2: (Dol D
a b

Figure 17: Path substructures

e We consider three general cases for S; (see Figure 17). In each case, if an
endnode of S; has been previously identified as switching to white from
grey (due to an alteration of a substructure with model M13 or M16 during
the current execution of Subroutine 1*), then we treat it here as if it is
already white. The interior nodes of each path are striped. The path in
Case 1 contains 4 or more nodes. After identifying new substructures in
each case, a subpath of S; may not be explicitly assigned a new type of
substructure. Assign such subpaths the appropriate model depending on
the type of their endnodes. (For example, in Case 1, if @ and d are the
only nodes in C(S;) U Ext(S;), then b and ¢ become white and the subpath
between them becomes a substructure with model M2 or M23, depending
on its length.)

e Case 1:

— Suppose a is the only node in C(S;) U Ext(S;).

* b becomes white.

* The alternating path for ba is determined when it is a pendant
edge for a substructure containing a.

* ba becomes a substructure with model M5.

— Similarly if d, or a and d are the only nodes in C(S;) U Ext(S;).
e Case 2:

— Suppose a is the only node in C(S;) U Ext(S;), or a and ¢ are the
only nodes in C(S;) U Ext(S;). (We assume a and ¢ are not white
with wv = ac a substructure with model M24. This case is handled
in Subroutine 2.)

* b becomes white.

* The alternating path for ba is determined when it is a pendant
edge for a substructure containing a.

* ba becomes a substructure with model M5.

— Similarly if ¢ is the only node in C(S;) U Ext(S;).

e Case 3:

63

— Suppose a is the only node in C(S;) U Exzt(S;) and b is grey.
* b becomes white.

* The alternating path for ba is determined when it is a pendant
edge for a substructure containing a.

* ba becomes a substructure with model M5. Update the other
substructure S; that contains b: If it has model M13, switch it
to a substruture with model M11; if it has model M16 switch it
to a substructure with model M14.

— Suppose a is the only node in C(S;) U Ext(S;) and b is white.

x The alternating path for ba is determined when it is a pendant
edge for a substructure containing a.

* ba becomes a substructure with model M2.

S; has model M24:
e Suppose a (or b) is the only node in C(S;) U Ext(S;).
— 5; retains its type.

e Suppose a and b are in C(S;) U Ext(S;) and ab does not play the role of
uv.

— S; shrinks.

e Suppose a and b are in C(S;) U Ext(S;), ab plays the role of uv, and the
nodes ¢ and d are not identified. (The case that they are identified is
handled in Subroutine 2.)

— ca is a pendant edge. (Similarly for pendant edge db.)

* For pendant edge ca, if a is white, use alternating path caU P"¥ U
pv.
* For cross edge cb, use alternating path c¢b U P".

— S; shrinks.

End

Note: The phrase “determined elsewhere” is used a number of times (and
highlighted in bold) in Subroutine 1* in reference to defining alternating paths
of type 2 for pendant edges. Let us explain this in more detail. There are two
cases to consider for a substructure S;. In both cases the pendant edge for S; is
represented by a bold dashed edge in the corresponding model’s figure. Let x
denote the endnode of this pendant edge that is contained in .S;.

Case 1: z is a white in-node in C(S;) U Ext(S;). Examples from Subroutine
1*:

64

e For model M5: a,b € C(S;) U Ext(S;); © = a; ca is pendant.
e For model M8: a,d € C(S;) U Ext(S;); © = a; ea is pendant.
e For model M12: ¢ € C(S;) U Ext(S;); = ¢; de is pendant.

Case 2: z is a white out-node in C(S;)UExt(S;). Examples from Subroutine
1*:

e For model MT7: ¢ € C(S;) U Ext(S;); x = ¢; dc is pendant.
e For model M17: b,e € C(S;) U Ext(S;); © = e; ge is pendant.
e For model M20: a,e € C(S;) U Ext(S;); © = e; ge is pendant.

Suppose we have & € C(S;) in Case 1 or 2. Then (1) there must exist an arc
zx in D with nodes z and z in C and its head at x; or (2) there must exist a
temporary substructure S; that defines C' with either u or v equal to x, say v.
For subcase (1), consider the substructure Sy that contains nodes z and z. If
we examine all types of substructures in Subroutine 1* that can play the role of
Sk (with z,z € C(Sk) U Ext(Sk) and z an in-node with corresponding out-node
x, and pendant edge at x) we see that an alternating path is defined for the
pendant edge (and passes through Si). The only possibility for the subcase (2)
(since v is white and incident with a pendant edge) is that the model for S is
M24; when this occurs, the alternating path for the pendant edge at v is defined
in Subroutine 1* when S is considered.

Next suppose x € Ext(S;). By Step 1 of Subroutine 1, x must have previously
entered Int(S;) for some j # ¢. In examining the cases in Subroutine 1*, there
are only two ways that x can enter Int(S;) and then be incident with a pendant
edge: As node c¢ for model M12 or M15, where a,b € C(S;) U Ext(S;), in both
situations. Since, in both situations, ¢ is a white in-node, it cannot play the role
of z as an in-node in .S;, since & would be an in-node in two substructures, which
is not allowed by the definition of D. Hence, we are left with the possibility that
x is an out-node of S;, which is the remainder of Case 2 above. An examination
of Subroutine 1* shows that we must have one of the three examples given above
for Case 2. In each case the alternating path is defined for the pendant edge
when S is considered in Subroutine 1*.

6.3 Subroutine 2: Substructure transformation cases

Subroutine 2: Substructure Transformation Cases

In this subroutine, we first check if certain conditions hold (called the Trans-
formation Condition and the Flipped Transformation Condition). If one of
these conditions holds, then we perform a transformation on some substructures,
including the substructure uv with model M24, which serves as input to this
subroutine from Step 2, part 1 of the Main Algorithm. The outcome of the
transformation is an update of the substructures so that the edge uv becomes

65

Figure 18: Substructure transformations - 1

/7 T—
I |
' ,—P‘\;
b t~-7
B2 B3
PEIS PRI
’ ' \
(1 a (1 a
“\ he < ~<
1 [
N [c
/, \,,_,\\ - N
\ ! l, \I_>
b 4'—\‘_,' ‘\]
b =¥
B6 B7

Note: The two arrows from node d in graphs C2 and C4 indicate that
the node can be either an in-node for the substructure containing
node ¢ or an out-node for that substructure.

Figure 19: Substructure transformations - 2

66

Figure 20: Substructure transformations - 3

C12

Figure 21: Substructure transformations - 4

67

Note: The two arrows from node d in graphs D2 and D4 indicate that
the node can be either an in-node for the substructure containing
node ¢ or an out-node for that substructure.

Figure 23: Substructure transformations - 6

68

Figure 24: Substructure transformations - 7

69

an edge in a new, larger substructure. If neither condition holds, we do nothing.
After the subroutine finishes, we return to Step 2, part 1 in the Main Algorithm.

The two Transformation Conditions reference Figures 18 to 24, so we begin by
describing the content of these figures. (Note: The node labels on the substruc-
tures in these figures need not agree with the node labels on the corresponding
model graphs in Figures 6 to 9.)

Consider the graphs in Figure 18 and the graphs on the left in Figures 19 to
24. These graphs satisfy the following properties.

e Each of the graphs B1,..., B7 in Figure 18 (without the thin dashed edges)
represents a combination of two substructures with models M2, M5, or
M6.

e In each graph Bl1, ..., B7, at least one of the nodes is white (not shrunk).

e The path in M of length 2 in B8 is a substructure with model M23, where
b is a striped node, or the path in M in a substructure with model M10,
where b is a black node.

e Each of the graphs C1 and C3 in Figure 19 (without the thin dashed edges)
represents a combination of three substructures with models M5 or M6;
M13; and a portion of M21 or M22 (indicated by the thick dashed edge).

¢ Each of the graphs C5 and C7 in Figure 20 (without the thin dashed edges)
represents a combination of two substructures with models M5 or M6; and
M17.

e Each of the graphs C9 and C11 in Figure 21 (without the thin dashed
edges) represents a combination of two substructures with models M5 or
M6; and M18.

e Each of the graphs C13 and C15 in Figure 22 (without the thin dashed
edges) represents a combination of two substructures with models M5 or
M6; and M19.

e Each of the graphs D1 and D3 in Figure 23 (without the thin dashed edges)
represents a combination of three substructures with models M5 or M6;
M16; and a portion of M21 or M22 (indicated by the thick dashed edge).

e Each of the graphs D5 and D7 in Figure 24 (without the thin dashed edges)
represents a combination of two substructures with models M5 or M6; and
M20.

Transformation Condition: There exist substructures in G that form one
of the configurations shown in the graphs in Figure 18 or one of the graphs on
the left in Figures 19 to 24 where, in each graph, the thin dashed edge represents
the edge wv from the Main Algorithm (a substructure with model M24).

Flipped Transformation Condition: There exist substructures in G that
form one of the configurations shown in the graphs C1, C5, C9, C13, D1, and

70

D5, in Figures 19 to 24 except, in each graph, the thin dashed edge xa represents
a substructure with model M6 and the edge xb represents the edge uv from the
Main Algorithm (a substructure with model M24). In short, the roles of za and
xb are reversed from the Transformation Condition for these graphs.

If the Transformation Condition holds, then perform one of the following
transformations, depending on which configuration we have. In Figures 19 to 24,
the transformation for each graph on the left is illustrated by the corresponding
graph to the right. If the Flipped Transformation Condition holds, then perform
the analogous transformation where the roles of za and xb are reversed.

e The inputted edge uv, which is a substructure with model M24, is depicted
by the thin dashed edges. This edge forms a triangle in G, as depicted,
and this triangle is also a triangle in G.

B1: Transform into a substructure with model M11. Let & be the endnode
of ab inside b. The alternating path from a becomes ac U cb U PY. Up-
date, accordingly, other alternating paths that pass through this new
substructure.

B2: Transform into a substructure with model M14.

B3: Transform into a substructure with model M12. Let ¢’ be the endnode
of bc inside ¢. The alternating path from b becomes ba U ac U P Up-
date, accordingly, other alternating paths that pass through this new
substructure.

B4: Transform into a substructure with model M15. Let b’ be the endnode of ¢b
inside b. The alternating path from a becomes cbUP? . Update, accordingly,
other alternating paths that pass through this new substructure.

B5: Transform into a substructure with model M15.

B6, B7: Transform into a substructure with model M7. For B6, let ¢’ be the
endnode of ac inside ¢. The alternating path from a becomes ac U Pe.
Update, accordingly, other alternating paths that pass through this new
substructure. The base edges for a and b remain the same, according to the
definition of base edges. For B7, update the alternating paths analogously.
The base edge for a changes to ac.

B8: If the path in M is contained in a substructure with model M10, then
delete from G the non-matching edge incident with the black node. In
both cases, transform into a substructure with model M11. Make node b a
white node with alternating path bc U ca U P®.

C1: Transform into two substructures (see C2) with models M14 and either
M8 or M9 (depending on node d). If a is shrunk, let a’ be the endnode of
ac; otherwise, let a’ := a. Note that node d in C1 is either white, grey, or
striped. If d is white, then it keeps this type and the substructure with

71

C3:

C5:

C7:

C9:

Ci11:

C13:

C15:

D1:

D3:

D5:

D7:

model M22 in C1 that contains cd becomes part of a substructure in C2
with model M9. If the path in D from node d goes to node b, then we have
a violation of property S13. We fix this as follows: Reroute all alternating
paths that contains d along the path dcUcaU P (Note that this shortens
all such paths, so this operation cannot “cycle” in the algorithm. Also,
performing an exchange on such a path creates a triangle a, b, c in M, which
is later removed by the extension P in Step 2 of the Main Algorithm.) If d
is grey, then it becomes white in a substructure in C2 with model M8 and
alternating path de U ca U P%. Also, the other substructure with model
M13 or M16 that contains d switches to a substructure with model M11 or
M14, respectively. If d is striped, then it becomes white in a substructure
in C2 with model M8 and alternating path dcU ca U P . The substructure
that contained d is updated to one with model M22 or M23, as appropriate.
(See substructures property S8.)

Transform into two substructures (see C4) with models M11 and either
M8 or M9 (depending on node d). Update d as for the C1 case.

Transform into two substructures (see C6) with models M14 and M8. (The
edge ce is removed from the substructures.)

Transform into two substructures (see C8) with models M11 and M8. (The
edge ce is removed from the substructures.)

Transform into two substructures (see C10) with models M14 and MS.
(The edge cb, which is not in M, is removed from the substructures.)

Transform into two substructures (see C12) with models M11 and MS.
(The edge cb, which is not in M, is removed from the substructures.)

Transform into three substructures (see C14) with models M14, M8, and
M2. (The edge ce is removed from the substructures.)

Transform into three substructures (see C16) with models M11, M8, and
M2. (The edge ce is removed from the substructures.)

Transform into two substructures (see D2) with models M7 and either M9
or M10 (depending on node d). Update d as for the C1 case.

Transform into two substructures (see D4) with models M15 and either
M9 or M10 (depending on node d). Update d as for the C1 case.

Transform into two substructures (see D6) with models M7 and M9. (The
edge ce is removed from the substructures.)

Transform into two substructures (see D8) with models M15 and M9. (The
edge ce is removed from the substructures.)

72

Figure 25: Growing into a grey node-1

Note: Consider the graphs Bl,..., B7 in Figure 18. If we have one of these
configurations with wv as the thin dashed edge, and all the nodes are shrunk,
then the situation is dealt with elsewhere in the algorithm: If a and ¢ are shrunk
in B1, then ac is a temporary substructure with model M2 that should have
been selected at the start of Step 2; similarly, if b and ¢ are shrunk in B2. In the
remaining cases, the thin dashed edge is a substruture with model M24. When
it is considered as S; in Step 2, part 1 in the Main Algorithm, the algorithm
is directed to Step 2, part 3. The conditions in part 3 are not satisfied, so the
algorithm continues to Step 2, part 4, where the triangle is shrunk in Subroutine
1.

End

6.4 Subroutines 3 and 4

In this section we describe Subroutines 3 and 4, which are used to create new
substructures. Recall that edge uv was determined in Step 3 of the Main
Algorithm.

Subroutine 3: Growth into a grey node

Consider graphs Q1 and Q2 in Figure 25: Triangle abv is a substructure with
models M13 and M16, respectively, and vc is an end-edge for a substructure with

73

Figure 27: Growing into a grey node-3

74

model M21 or M22. Specifically, u is white or shrunk, v is grey, and c is striped
or grey. (Note that ¢ cannot be white since we do not consider edge uv in that
case.) Graphs Q3 and Q4 represent special cases of Q1 and Q2, respectively. In
particular, they have the same properties as Q1 and Q2, respectively, except the
path substructures with endnode v have precisely two edges and a white node d
as their other endnode.

e Suppose we have situation Q1 in Figure 25 where the node u is identified
with node b (hence they are shrunk). Then make nodes a, b, v, and ¢
into a substructure with model M18 where v becomes a black node and ¢
becomes a white node. Let u' be the endnode of vu inside u. Then the
alternating path for ¢ is cv Uvu/ U P¥.

e Additional update: Appropriately update the original substructure with
model M21 or M22 that contains node c. In particular, if ¢ is changed from
a grey node to a white node, then the other substructure that contains it
changes from a substructure with model M13 or M16 to a substructure
with model M11 or M14, respectively.

Example: In Figure 26, see the transformation of graph Q5 into Q6.

e Suppose we have situation Q2 in Figure 25, where the node u is identified
with node b (hence they are shrunk). Then we remove edge bv in triangle
abv from the substructures, make ba into a substructure with model M6,
and make v a black node in a substructure S; with model M9. Let u’ be the
endnode of vu inside u. Node ¢ becomes a white node with alternating path
cvUvu’ UP™ . Note that P® cannot contain node ¢ since it is just now being
made white hence S; satisfies property S13. Perform an additional update
as described above, if needed. Note that the two resulting substructures do
not form a prohibited combination since u’ # b’, where b’ is the endnode
of ab that is inside b.

e Suppose we have situation Q1 in Figure 25, where the node u is identified
with node a (hence they are shrunk). Then we remove edge av in triangle
abv from the substructures, make ba into a substructure with model M5,
and make v a black node in a substructure with model M9. Let u’ be the
endnode of vu inside u. Node ¢ becomes a white node with alternating
path cv Uvu' U P¥ . Perform an additional update as described above, if
needed.

Example: In Figure 26, see the transformation of graph Q7 into Q8.

e Note that it is not possible that we have situation Q2 in Figure 25, where
the node w is identified with node a because a is white (not shrunk).

()

e Suppose we have situation Q3 in Figure 25, where the node u is identified
with node d (hence both are white (not shrunk)). Then we make v
a black node, make ¢ a white node, and make the nodes a, b, v, ¢, d
define a substructure with model M19, where the alternating path for c is
cvUvdU P

Example: In Figure 27, see the transformation of graph Q9 into Q10.

e Suppose we have situation Q4 in Figure 25, where the node u is identified
with node d (hence both are white (not shrunk)). Then we keep v as a grey
node, make ¢ a white node, remove the edge bv from the substructures,
make ba into a substructure with model M6, make av into a substructure
with model M22, and make the triangle ved into a substructure with model
M13, where the alternating path for ¢ is cv U vd U P?.

e Suppose we have the situation Q1 in Figure 25, where u is not identified
with a or b or a white node d as in Q3.

— If the path P“ contains node b, then make a, b, v, ¢, u into a
substructure with model M17, where v becomes black and ¢ becomes
white with alternating path: cv Uvu U P¥. Perform an additional
update as described above, if needed.

Example: In Figure 27, see the transformation of graph Q11 into
Q12.

— If the path P* does not contain node b, then remove edge av from
the substructures, make v a black node and ¢ a white node, make
ab into a substructure with model M2, and make edges bv, uv, and
cv into a substructure with model M8, where the alternating path
from b becomes bv Uvu U P* and the alternating path from ¢ becomes
cv Uwvu U P¥. Perform an additional update as described above, if
needed.

e Suppose we have the situation Q2 in Figure 25, where u is not identified
with b or a white node d as in Q4.

— If the path P* goes through node a without node b, then make a, b,
v, ¢, u into a substructure with model M20, where v becomes black
and ¢ becomes white with alternating path: cv Uvu U P*. Perform
an additional update as described above, if needed.

— If the path P* does not go through node a without node b, then
disregard edge bv, make v a black node and ¢ a white node, make ba
into a substructure with model M6, make edges av, uv, and cv into a
substructure S; with model M9, where the alternating path from c

76

Figure 28: Growing into a striped node

becomes cv U vu U P¥. Note that P® cannot contain node ¢ since ¢ is
just now being made white, hence S; satisfies property S13. Perform
an additional update as described above, if needed.

End

Subroutine 4: Growth into a striped node

Consider graph N1 in Figure 28, where u is white or shrunk, v is striped,
and a and b are each striped, grey, or white. Note that the path avb occurs in a
substructure with model M4, M21, M22, or M23.

1.
2.

Make v black.

If @ is white, make no change to its type. Similarly, if b is white.

. If a is grey, make it white with alternating path: av U vu U P*. Similarly,

if b is grey.

. If a is striped, make it white with alternating path: avUwvuU P*. Similarly,

if b is striped.

. Create a new substructure containing v with model M8, M9, or M10, as

appropriate. If the substructure that contained avb contains additional
edges, appropriately update them. Such an update produces one or two
substructures, each with model M2, M22, or M23. If node a (respectively
b) has been changed from a grey node to a white node, then the other
substructure that contains it changes from a substructure with model M13
or M16 to a substructure with model M11 or M14, respectively.

Example: Consider graph N2 in Figure 28, where ¢, a, v, b is a substructure
with model M22 and b, d, e is a substructure with model M13. This step
results in the substructures in graph N3, where c¢,a is a substructure

(s

c a v b c a v b c a v b
7w T -
N4 u N5 u N6 u
c a v b c a v b € a v b
'?/ I lD/ E
e - -
N7 O N8 'S N9 A
N \oru o

‘J \iz \J .

¢ a v b c a v b c a v b
5 I ; . » 5 j‘ ; . » ; | ; .
NiIO) TN A
i /‘u N11 ! /‘u N12 ! /l u

N
~-7 N N

Figure 29: Growing into a striped node and creating a prohibited pair of
substructures

with model M2, a,v, b, u is a substructure with model M8, and b,d, ¢ is a
substructure with model M11.

6. Check if the new black node substructure forms a prohibited pair of
substructures as in Figure 10.

e Suppose a prohibited pair of type Prl or Pr2 has been formed. Change
v to a grey node, return the node a to its previous type, update
the path substructure containing av, and identify the triangle as a
substructure with model M13.

e Suppose a prohibited pair of type Pr3 has been formed. Change v to
a grey node, return the node a to its previous type, update the path
substructure containing av, and identify the triangle as a substructure
with model M16.

Examples: Consider the graphs in Figure 29. Applying this step to
N4 results in the graph N5, which contains the substructure a, v, b, u
with model M8 and substructure b,u with model M2. These two
substructures are a prohibited pair as shown in Prl in Figure 10.
They are then modified as in N6, where v, b, u is a substructure with
model M13. The graphs N7, N8, and N9 illustrate what happens when
a prohibited pair as shown in Pr2 in Figure 10 is created. And the

8

graphs N10, N11, and N12 illustrate what happens when a prohibited
pair as shown in Pr3 in Figure 10 is created.

End

7 Proofs

In this section we prove the validity of the algorithm, show that it has polynomial
time complexity, prove Theorem 1, and finish the proof of Theorem 2.

Let us first observe that the initial set of substructures, established in Step 0
of the Main Algorithm, satisfies the defining properties S1-S13 of substructures.
Our first objective is to show that the various subroutines always result in a
new set of substructures that continue to satisfy these properties. For the most
part, this is straightforward. Most of our effort goes into showing this is true for
property S10 during the shrinking procedure in Subroutine 1, which is the most
complex part of the algorithm.

For each call of Subroutine 1, we have a corresponding node set C. Let A(C)
denote the arcs of D between two nodes of C. (These are the arcs of D that
correspond to the cycle created by adding the edge uv to the graph underlying
D.) Note that, if there exists a substructure S; with model M8 where a, b, and
d are in C(S;), then we first process S; and then remove d from all sets C(S;)
that contain d. As a result, d is not involved in any substructures subsequently
considered during this call. However, A(C) still contains two arcs of D incident
into d. We call such a node d an M8 bottom node. This situation leads to the
creation of a type 1 shrunk node.

Observe that, for a given S; during a call of Subroutine 1, the set Int(S;) is
recomputed each time S; is considered in Subroutine 1*. The following result
shows that each time the set is recomputed, it contains the previously computed
set.

Proposition 3. Consider a call of Subroutine 1 from the Main Algorithm
and suppose S; is considered two or more times during this call. In one case,
suppose the input to Subroutine 1* is C(S;) U Ext1(S;) and the chosen output is
Int1(S;). In another case, suppose C(S;)U Exta(S;) is the input and the chosen
output is Into(S;). If the Ext1(S;) case occurs before the Exta(S;) case, then

Proof. We assume that 5; is selected at least twice in Step 1 of Subroutine 1.
After its first selection, after finishing Step 1, part 1, all nodes in C'(S;) U Ext(S;)
at that point have been added to Proc(S;) and removed from Unproc(S;).
Observe that no nodes are removed from Proc(S;) or from Ext(S;) at any later
point in the subroutine. Hence, when S; is selected a second time, there must exist
a new node in Ext(S;)NUnproc(S;). This continues to be true for any subsequent
selections of S;, hence, in general, Fxti(S;) C Exty(S;). An examination of the
cases in Subroutine 1* then shows that we have Int;(S;) C Inta(S;).

U

79

Consider a call of Subroutine 1 at the point just before Step 2 of the subroutine
is executed (where we perform a shrinking). We define a special subdigraph,
call it D', of D as follows: To begin, set D’ to be the tree defined by the arcs
in A(C) and the endnodes of those arcs. Next, for each substructure S;, add
to D" all arcs of D (with their endnodes) where the endnodes are an in-node,
out-node pair for S; and either one endnode is in C(S;) U Ext(S;) and the other
endnode is in Int(S;) or both endnodes are in Int(S;) (where the M8 bottom
node, if one exists, has been removed from each C(S;)).

Proposition 4. Consider a call to Subroutine 1 at the point just before Step 2
of the subroutine is executed. Then the node set of D' (defined above) equals the
union of the white and shrunk nodes in the sets C(S;) U Ext(S;) U Int(S;), taken
over all substructures S;, plus an M8 bottom node, if one exists. In addition, D’
s connected.

Proof. Consider the following construction during the entire execution of Sub-
routine 1 up to the point just before Step 2 or the subroutine is executed. To
begin, set E’ := A(C'). Whenever a substructure S; is considered and a white or
shrunk node « is identified for Int(S;), observe, in Subroutine 1*, that there is at
least one arc of D between x and a white or shrunk node y in C(S;) U Ext(S;);
or there is an arc of D between = and another node y in Int(S;) such that, in
both cases, z,y is an in-node, out-node pair for S;. (Such arcs can go in either
direction between x and y.) Add all such arcs to E’. Note that by Proposition
3, this set of arcs, taken over all S;, equals the arc set of D’ (which is defined
at the end of this procedure). Hence, the node set of D’ equals the union of
the white and shrunk nodes in the sets C(S;) U Ext(S;) U Int(S;), taken over
all substructures S;, plus an M8 bottom node, if one exists. Furthermore, by
inspecting the cases in Subroutine 1*, we can see by induction on the number
of arcs in E’, where we start from E’ := A(C), that the arcs in E’ (with their
endnodes) form a connected digraph at all times (since the arcs in A(C) (with
their endnodes) form a connected digraph); hence, D’ is connected.

O

Proposition 5. Let G be a graph with associated graph G and set of substructures
that satisfy the properties S1-S18 of substructures. Then the substructures
resulting from a call of Subroutine 1, 2, 3, or 4 also satisfy these properties.

Proof. Let us discuss a few cases in a bit of detail. In all other cases, a straight-
forward examination of the algorithm shows that all the properties are satisfied
at the ends of the various subroutine calls. Note that whenever a substructure
with model M9 is formed, we establish that Property S13 holds. An examination
of the cases when a substructure with model M8 or M9 is formed shows that
the only place a prohibited substructure could be formed is in Subroutine 4. We
deal with this possibility in the subroutine by forming substructures with model
M13 or M16. Thus, Property S12 holds. Let us finally address Property S10
at the end of a call to Subroutine 1, which requires the newly defined directed
graph, call it D", to be a directed forest. Let us consider how D’ can be formed

80

from its predecessor D. Let D’ be the sub-digraph of D defined above. By
Proposition 4, the node set of D’ consists of the white and shrunk nodes in
C(S;) U Ext(S;) U Int(S;), taken over all substructures S;, plus an M8 bottom
node, if one exists; and D’ is connected. Consider the collection of substructures
obtained by shrinking the nodes in C(S;) U Ext(S;) U Int(S;), over all the sub-
structures S;. If there is no M8 bottom node, then D" is obtained from D by
shrinking the nodes in D’ (and adding one arc for each node that is switched
from grey or striped to white; these arcs have degree 1 at the switched nodes).
Since D’ is connected, D" is a directed forest, as required. Suppose there is an
M8 bottom node. Then shrinking the nodes of C(S;) U Ext(S;) U Int(S;) yields
a directed graph that is a forest except for one pair of parallel arcs directed into
the M8 bottom node. D’ is obtained by deleting one of these two parallel arcs
(and adding one arc for each node that is switched from grey or striped to white;
these arcs have degree 1 at the switched nodes), and hence it is a directed forest.
Thus, D" satisfies property S10.

O

The following proposition simply notes that Properties A1, A2, and A3 (from
Section 5.4) hold. These properties will help us show that the tri-blossom clusters
at the end of the algorithm (defined below) are saturated by the tri-free simple
2-matching at the end of the algorithm.

Proposition 6. Properties A1, A2, and A3 hold during the algorithm.

Proof. These properties hold by induction on the number of shrunk nodes during

the algorithm and an examination of Subroutine 1.
O

The following proposition shows that Property A4 holds; it concerns the five
types of shrunk nodes that occur during the algorithm.

Proposition 7. Property A4 holds during the algorithm.

Proof. Let v be a shrunk node in G during the algorithm. Let v" denote the base
node of v and let v’z be the base edge of v, if it has one. If v has a base edge in
M, or has no base edge, then it follows from Properties S1 - S13 and Properties
A1l and A2 that v has one of types 2 - 5. If v has a base edge not in M, then it
follows that v has type 1 by the way such shrunk nodes are constructed: either
in Step 2 of the Main Algorithm, where the base edge arises from the edge cd in
a substructure with model MS; or, at a later point, when v, but not z, shrinks
into a larger shrunk node (e.g., in Subroutine 1* when S; has model M6 and «a
is the only node in C(S;) U Ext(S;)).

O

The next proposition helps demonstrate in the subsequent proposition that
Property A5 holds; it concerns the three types of alternating paths, which are
defined in Subroutine 1*.

81

Proposition 8. Consider a substructure S; during a call to Subroutine 1.
Suppose z,y € C(S;)UExt(S;) and x,y is an in-node, out-node pair in S; (hence
xy (oryx) is an arc in D). Then zy (or yx) is an arc in A(C).

Proof. Recall, from Proposition 3, that if a node z is contained in C(S;) or
Ext(S;) or Int(S;) at any time during an execution of Step 1 of Subroutine 1,
then x remains in that set up to the point just before Step 2 of the subroutine is
executed. So, let us suppose an execution of Subroutine 1 is at the point just
before Step 2 of the subroutine is executed. Consider two nodes z,y that are an
in-node, out-node pair for a substructure S; (hence, each node is either white
or shrunk). If z,y € C(S;), then zy (or yx) is in D’, by definition of D'. If
x € C(S;) U Ext(S;) and y € Int(S;), then, again by definition, zy (or yz) is
in D', and this arc cannot be in C(S;) because y is not in C(S;). Similarly, if
z,y € Int(S;), then xy (or yz) is in D’, and this arc cannot be in C(S;) because
neither nor y is in C(S;). By definition of D’, these three types of arcs, taken
over all S;, comprise all the arcs of D’. There are two other possibilities for
and y; we could have x,y € Ext(S;); or x € C(S;) and y € Ext(S;). Note that,
in either case, the corresponding arc zy (or yz) would not be in D’, from the
definition of D’, but it would be in D, since nodes x,¥ are an in-node, out-node
pair for S;. However, this arc would form a cycle with the arcs in D’ since, by
Proposition 4, the node set of D’ equals the union of the white and shrunk nodes
in the sets C(S;) U Exzt(S;) U Int(S;), taken over all substructures S;, plus an
MS8 bottom node, if one exists; and D’ is connected. This contradicts D being
acyclic. The result follows.

O

Proposition 9. Property A5 holds during the algorithm.

Proof. First we show that the paths defined in Subroutine 1* are well-defined
and alternating. Next, we show these alternating paths pass through the base
node (and base edge, if it exists) of the new shrunk node. Using induction,
let us assume G has n > 0 shrunk nodes and the result holds for graphs with
at most n shrunk nodes. Consider a new shrunk node as it is being defined
during a call to Subroutine 1*. Note that each new alternating path defined is
constructed by combining explicitly defined paths with previously defined paths.
Previously defined paths have the form P"Y and P*. These are alternating
paths by induction. Explicitly defined paths have the form of a few edges of G
and paths of the form PY. (For example, consider the case that S; has model
M13 in Subroutine 1* and a and b are the only nodes in C(S;) U Ext(S;). For
pendant edge dc, we define the alternating path dcUca UabU P U P* U PY.
The explicitly defined portion of the path is dc U ca U abU P}; the remainder
uses previously defined paths.) The initial few edges form an alternating path
by inspection of the cases. Proposition 8 shows that the addition of P} to these
initial few edges defines an alternating path since the edge adjacent to P in the
path has its endnodes in C(S;) U Ext(S;), which are an in-node, out-pair in S,
hence they also define an arc in A(C'). (In our example, nodes a and b are in

82

C(S;) U Ext(S;), are an in-node out-node pair for S;, and therefore define an
arc in A(C); hence the path P plus ab is a well-defined alternating path.)

To see that every alternating path defined in Subroutine 1* passes through
the base node of the new shrunk node, observe that, in all but two cases, the
alternating paths end with a subpath of the form P*, where x is being shrunk
into the new shrunk node and z is either a node of G or a node of @ inside a
shrunk node of G. The two exceptions, where the alternating paths end with a
subpath that does not go to a root of G, are the following:

1. S; has model M11, ¢ is the only node in C(S;) U Ext(S;), and the path in
D from ¢ goes to b.

2. S; has model M17, d and e are the only nodes in C(S;) U Ext(S;), and the
path in D from e goes to b.

In both of these cases, the alternating paths end at node b (in model M11 or
M17), if it is white, or the base of b, if it is shrunk. Hence, the final subpath in
these cases has the form Py .

For each path P* (or P?), there is a corresponding path P* (or PY) in
D. Because the nodes being shrunk form a connected subtree D’ of D (by
Proposition 4), each path ends at a common root (or passes through the node b
as discussed in the above two exceptions). Thus, there is a first node y common
to these paths. Again, because D’ is connected, the node y will shrink into the
new shrunk node. If y is not a root, let yz denote the first arc in PY. This
arc yz in D defines a path through a substructure after the shrinking and the
first edge on this path becomes (by definition) the base edge of the new shrunk
node and its endnode inside y is the new base node (by induction if y is shrunk).
Furthermore, all the alternating paths pass through this new base node and base
edge (by induction if y is shrunk). If y is a root, then it becomes the new base
node if it is white, or, if it is shrunk, its base node becomes the new base node
(again by induction).

O

We next present the proof of Proposition 2.

Proof. Suppose x in F' is not incident with a dashed thick edge in the corre-
sponding figure and z’ is incident with exactly one edge of M in S;. Furthermore,
suppose z’ is a white node in S;. (E.g., could be node b in model M2 or M9).
If 2/ is a root, then it is incident with no other edge of M, and point 1 holds for
this case. If 2’ is not a root, then it is an in-node for some other substructure,
say S; (by Property S9). Note that (as observed after Property S4), for any
such S;, the path from the white in-node 2’ to an out-node starts with an edge,
say e, of M. Hence, the edge e is not a border edge by the definition and, again,
point 1 holds for this case.

Again, suppose z in F' is not incident with a dashed thick edge in the
corresponding figure and 2’ is incident with exactly one edge of M in S;. Now,
suppose z’ is a shrunk node in S; and that e is the edge of M in S; incident with

83

z'. Let 2" be the endnode of edge e inside z’. If e is the only edge of M incident
with 2’ in G, then point 1 follows for this case since there is no edge of M with
one endnode at z” and the other not in S;, (hence, by Property A4, ' is a type
4 shrunk node with its base node at z’). So let us suppose z” is incident with
a second edge, say f, of M in G. If f is inside 2/, then, again, point 1 follows
for this case. So let us suppose that f is outside 2. By Properties A3 and A4,
2’ is a type 2 shrunk node, f is the base edge (since for all models, the arrow
in the figures at x’ points away from S;), and 2’ is not a root. Hence, as for
the previous case, ' must be an in-node in some other substructure and, again,
point 1 holds for this case.

Clearly, if 2/ is incident with two edges of M in S; (e.g., is node ¢ in model
M8 or node b in model M11), then z in F is incident with no dashed thick edge,
S; cannot have a border edge at =/, and point 1 holds for this case.

Suppose z in F' is not incident with a dashed thick edge in the corresponding
figure and 2’ is incident with no edges of M in F. If S; has model M1, point 1
immediately holds for this case by Property S6. In all other cases, 2’ is a type 1
shrunk node and an in-node for S;; e.g., = could be node a in M6 or node a in
M7. By Property A4, the base node of 2’ is incident with two edges of M that
are inside z’, hence no border edge for S; can be incident with 2’ and we have
finished showing point 1 holds.

There is one final case to show point 1 holds: Suppose z in F' is not incident
with a dashed thick edge in the corresponding figure and z’ is incident with
exactly one edge of M in S;. Furthermore, suppose z’ is a shrunk node in S; and
that it is incident with an edge e of S; not in M. These conditions are satisfied
only if S; has model M3, where a = z. Observe from Subroutine 1* that a
substructure with model M3 is formed in one of two ways: by shrinking nodes a
and b in a substructure with model M11 or M14. Call this substructure S;. Let
z” be the endnode of edge e in S;. Consider the pass through Subroutine 1 when
S; is shrunk at the end of the subroutine. Let us apply the above arguments as
follows: If S; has model M11, then node a in S; plays the role of z”; and if S;
has model M14, then node b plays the role of z”. We see that S; can have no
border edge at x’ in either of these cases. And this property continues to hold
when a and b shrink together and the resulting substructure ultimately becomes
S;.

For the remaining cases, assume that x in F' is incident with a dashed thick
edge in the corresponding figure. Point 2 immediately follows from Property
S8. For point 3, observe that G can contain a substructure with model M2, say
with nodes 2’ and ¥, where y is not in S;. The edge 2y is a border edge for S;,
hence point 3 holds. (There are numerous other ways S; could have a border
edge incident with z’.)

O

We next consider the trickiest part of the proof of the algorithm’s validity:
showing that performing exchanges along alternating paths to increase the size
of the simple 2-matching creates no triangles in M.

84

Theorem 4. Performing an exchange along the alternating path P in Step 2,
part 8 of the Main Algorithm (where any required extensions of P have been
performed) results in a tri-free simple 2-matching.

Proof. For the following discussion, let M denote the tri-free simple 2-matching
before an exchange on P and let M’ denote the simple 2-matching after the
exchange on P. We show that M’ is tri-free. Consider the edges of G that
occur in no substructure and the edges inside a shrunk node that were in no
substructure when the node shrunk. These edges are not in M (by property
S3), do not occur in P, and therefore cannot be in M’. Hence, we focus on the
remaining edges of G. The proof is divided into three stages. In the first stage
we consider each substructure and identify a number of situations where an edge
cannot occur in a triangle of M’. The second stage builds on this by showing
that no triangle with all its edges in G can occur in M’. The third stage shows
that no triangle with one or more edges inside a shrunk node can occur in a
triangle of M’.

Definition: During this pass through Step 2 of the Main Algorithm, we refer
to the temporary substructure with endnodes v and v as the uv-substructure.

Stage 1

In this stage, we consider each type of substructure and identify situations
where no edges in the substructure can occur in a triangle of M’. We also
consider one case (for substructures with model M3) where an edge inside a
shrunk node cannot occur in a triangle of M’.

Let S; be a substructure in G before the exchange:

Suppose S; has model M2: Clearly, if P contains ab, then it cannot occur
in a triangle of M’. This occurs only if S; is a temporary substructure. We
examine the case that P does not contain ab in Stage 2.

Suppose S; has model M3: Note that there are two ways S; could have first
arisen: by shrinking node a (or shrinking a node inside a) when considering
a substructure with model M11 or M14. Let T denote the triangle in that
substructure with model M11 or M14. Observe that P (including possible
extensions) can contain an edge of S; in several ways. In one case, S; is the
uv-substructure, it arose from a substructure with model M11, and P contains
the edge of S; that is not in M and the edge of T that is shrunk. In a second
case, S; is not the uwv-substructure, it arose from a substructure with model M11,
and P contains both edges of S;, but not the edge of T that is shrunk. In a
third case, .S; is the uwv-substructure, it arose from a substructure with model
M14, and P contains the edge of S; that is in M and no other edge of T. In a
fourth case, \S; is not the wv-substructure, S; arose from a substructure with
model M14, and P contains only the shrunk edge of T'. In a fifth case, .S; arose
from a substructure with model M14, P contains no edge of T but contains

85

an edge adjacent in G to edge ab and we performed an extension of P on the
substructure with model M14 in Step 2 of the Main Algorithm. In each of these
cases, M’ contains either two edges of T or no edges of T, hence, none of these
three edges (hence, neither edge of S;) can be in a triangle in M’; this includes
all triangles, besides T', that contain an edge of T'. A sixth case is that S; arose
from a substructure with model M14 and no edge of P is incident in G to a node
of T. In this last case, M’ contains one edge of T, but this edge cannot be in a
triangle of M’ because this edge was not in a triangle of M.

Suppose S; has model M4: S; is a cycle of edges in M with length at least 4,
hence, no edge of S; can occur in P and no edge of .S; can occur in a triangle of
M.

Suppose 5; has model M5: Clearly, if P contains ab, then it cannot occur in
a triangle of M’'. We examine the case that P does not contain ab in Stage 2.

Suppose S; has model M6: Clearly, if P does not contain ab, then it cannot
occur in a triangle of M’. We examine the case that P contains ab in Stage 2.

Suppose S; has model MT: If P contains an edge of S;, then M’ must contain
two edges in S;. It follows that no edge of S; can occur in a triangle of M’.

Suppose S; has model M8, M9, or M10: We examine these cases in Stage 2.

Suppose S; has model M11: If S; is the uv-substructure, then no edge of S;
is in M’. Otherwise, for all possible paths P (whether they contain an edge of
S; or not), S; contains two edges of M’. Hence, no edge of S; can occur in a
triangle of M’.

Suppose S; has model M12: If P passes along the path {c¢,b,a}, then S;
contains no edges in M’. Otherwise, S; contains two edges of M’. Hence, no
edge of S; can occur in a triangle of M’.

Suppose S; has model M13: P either goes along the path {b,c,a} or contains
no edge of S;. In either case S; contains two edges of M’. Hence, no edge of S;
can occur in a triangle of M’.

Suppose S; has model M14 or M15: P either contains the edge ab only; the
edge ac only (when it is the uv-substructure for the M14 case); all three edges of
the triangle (where an extension of P was performed); or no node of the triangle.
Hence, the triangle has either two or no edges in M’, hence, no edge of triangle
can be in a triangle of M’; or the triangle contains one edge in M’, but this edge
cannot be in a triangle of M’ since it was in no triangle of M and P contains no
node of the triangle (due to the condition for an extension of P to be performed).

Suppose S; has model M16: P either contains the edge ab only; all three
edges of the triangle (where an extension of P was performed); or no node of the
triangle. Hence, the triangle has two edges in M’ and no edge of the triangle
can be in a triangle of M’; or the triangle contains one edge in M’, but this edge
cannot be in a triangle of M’ since it was in no triangle of M and P contains no
node of the triangle (due to the condition for an extension of P to be performed).

Suppose S; has model M17, M18, or M19: An alternating path passing
through these substructures is handled similarly to case M13. Note that the
edges not in the triangles of S; with model M17 or M18 also cannot occur in
a triangle of M’: In all cases, where P passes through S; or not, one of these
edges is in M’ and this edge is part of a path with 3 edges in M’.

86

Suppose S; has model M20: P contains, from S;, either (1) the edge ab and
no other nodes of S;; (2) the edges along the path d, ¢, e or the path d, e, ..., a,
which led to an extension of P that contains all three edges of the triangle;
(3) the nodes e and a only, or the node a only, which, in both cases, led to an
extension of P; or (4) no node of S;. In case (1), M’ contains the path b,a, ¢, d.
Since this path has three edges in M’, no edge of S; can be in a triangle of M’.
In case (2), M’ contains the path a,b, c,e. Since this path has three edges in
M’, no edge of S; can be in a triangle of M’. In case (3), M’ contains the path
a,b,c,d. Since this path has three edges in M’, no edge of S; can be in a triangle
of M'. In case (4), M’ contains the path a,c,d. Since no node of this path is
incident in G with an edge of P, and M was tri-free, no edge of S; can be in a
triangle of M’.

Suppose S; has model M21 or M22: The path P contains no edge in S;. Let
x be a grey endnode of S;. Then z is also in a substructure S; with model M13
or M16. We have seen that the edges in S; cannot occur in a triangle of M’ and
we also see, from our examination of the way P can pass through S;, that M’
has degree 1 at = in S;. It follows that no edge of S; can occur in a triangle of
M.

Suppose S; has model M23: (Recall that M23 contains at least two edges.)
No edge of S; can be in P, hence, if S; contains three or more edges, none of
them can be in a triangle of M’. The case where S; has two edges is examined
in Stage 2.

Suppose S; has model M24: If S; is not the uv-substructure, then it cannot
be in M’. The case where S; is the uv-substructure is examined in Stage 2.

Stage 2

Here is a list the substructures of G’, and situations with respect to P, where
it remains to be shown that an edge from such a substructure cannot occur in a
triangle of M’.

e S; has model M2 (where ab is not in P).

e S; has model M5 (where ab is not in P)

S; has model M6 (where ab is in P)

S; has model M8, M9, or M10.

S; has model M23 and contains precisely two edges in M.

e S; has model M24 and is the uv-substructure.

In this stage we show that no triangle with all its edges in G can occur in
M'. Given our work in Stage 1, it suffices to consider triangles consisting of
edges from substructures as listed above.

Consider Figure 18. Disregarding the dashed edges, graphs B1, B2, ..., B7
illustrate all the ways two substructures with models M2, M5, and M6 can share

87

one node in G. The white nodes in each case can also be shrunk. We observe, in
each of these cases, the only way to form a triangle in M’ in G containing both
these edges and using a substructure from the above list is to use a substructure
with model M24, where this is the wv-substructure (otherwise it could not enter
M’). This possibility is illustrated by the dashed edges in graphs B1, ..., B7 in
Figure 18; in each case this edge forms a triangle of edges in G. In Subroutine
2 we described transformations in the cases where at least one of the nodes in
the triangle is white (not shrunk). In these cases the triangles are transformed
into larger substructures, so there is no alternating path P to consider. So, let
us assume in each case that all three nodes are shrunk. First, observe that this
implies for B1 and B2 that ac and be, respectively, are temporary substructures.
Hence, they would already have been considered in Step 2 of the Main Algorithm,
due to the selection criteria for S, so these cases are not possible. Consider
graphs B3, .., B7: By considering the corresponding cases in the algorithm for
each of the substructures, we see that these graphs would shrink, so again there
is no alternating path P to consider.

Next, observe that a substructure S; with model M23 can only form a
triangle in M’ with a uv-substructure with model M24 (see B8 in Figure 18).
This possibility is addressed in Subroutine 2 where these two substructures
are transformed into a single substructure with model M11. So there is no
alternating path P to consider in this case.

We next consider how a triangle in M’ in G might be formed using a
substructure with model M8, M9, or M10.

First, consider the ways a substructure with model M8, M9, or M10 can form
a triangle with a substructure with model M2, M5, or M6. Three possibilities are
illustrated in Figure 10. These three combinations are prohibited by Property
S12. They can only be formed when the black nodes are first constructed in
Subroutine 4, but when this occurs the combinations are transformed into single
substructures with grey nodes. No other combination of these substructures
results in a triangle in M’ when we perform an exchange as indicated by the
arrows.

We next consider the ways a substructure with model M8, M9, or M10
can form a triangle 7" with a substructure uv with model M24. By examining
Figure 7 and the alternating paths indicated by the arrows, we see that there
are two ways in which such a triangle could appear in M. First, suppose we
have a substructure with model M9 (on nodes a,b, ¢,d as in Figure 7) and we
consider a temporary substructure uv = bd with model M24 in Subroutine
1*. In the course of defining the shrinking, gd is a pendant edge for bd and is
assigned the alternating path gd U dbU PP. If PP passes through node a, then
performing an exchange on the path would create a triangle bed in M. However,
by substructure property S13, this cannot happen (and this is enforced when
substructures with model M9 are created in Subroutine 4). A second way a
triangle could appear in M is if we have a substructure with model M10 and
we consider a temporary substructure uv = ab with model M24. Performing an
exchange on any alternating path through ab would create the triangle abc in
M. However, in Subroutine 2 we consider this situation (see B8) and instead

88

form a new substructure with model M11.

Finally, observe that no triangle with two or three edges in a substructure
with model M24 can be in a triangle of M’ since at most one of those edges can
be in M’ (i.e., the uv-substructure).

Stage 3

To this point we have presented a number of situations where an edge of G
cannot occur in a triangle of M’. In particular, we have shown that no triangle
with all three edges in G can occur in M’. So, the theorem follows if G contains
no shrunk nodes. For the remainder of the proof, we assume G has at least one
shrunk node and P contains at least one edge inside a shrunk node.

We next consider the ways M’ could contain a triangle with one or three
edges inside a shrunk node of G. (Precisely two edges inside a shrunk node is
not possible.) To begin, note that it is not possible for an edge in a substructure
in G with model MS, M9, or M10 to be in a triangle with a shrunk edge since
each such edge is incident with a black node that must be non-shrunk in G and
the three adjacent nodes (represented by a, b, and d in Figure 7) are distinct in
G. Similarly, consider a substructure with model M23 that contains exactly two
edges. FEach node is non-shrunk, hence these edges cannot be in a triangle with
a shrunk edge.

The following claim addresses this final issue. We remark, after the statement
of the claim and before its proof, that establishing its validity concludes the
proof of the theorem.

Claim 2. Let w be a shrunk node in G during the algorithm. Let boundary(w)
be the edges incident with w in G that are contained in substructures that have
models M2, M3 (where node a plays the role of w), M5, M6, or M24. Let W
denote the subgraph of G induced by the edges inside w together with the edges
in boundary(w). Let P(W) denote the restriction of alternating path P to W.
Then performing an exchange on P(W) results in a tri-free simple 2-matching
in W.

Before proving Claim 2 let us make two observations that show this claim
concludes the proof of the theorem.

First, note that there may be edges of G incident with w that are not included
in W. For example, consider a substructure with model M11 where a plays the
role of w. The edges ab and ac are not included in W. However, we have already
argued that edges of this type cannot be in a triangle of M’.

Second, note that this claim allows us to conclude that using an extension of
P creates no triangles in M’. To see this, choose a substructure S; with model
M14, M15, M16, or M20 and let b play the role of w. Note that performing an
exchange on an extension of P is simply an exchange on a type 1 alternating
path starting from the base node of b in S;, and ending along edge ba, plus an
exchange on the path a, c,b. We have already shown that no triangle in M’ can
contain an edge of the triangle abc and Claim 2 shows that no triangle in M’ is
created in W.

89

ad =% N @ Y "l l@
i h b c ’
Y ;- - ’ l ‘ l ¢
ﬂl' r \\‘ il
{ ' : :
AL ‘*l" b ‘~l»’ b
A2 A3

A4 l A6 A7

Figure 30: Triangles with two single-edge substructures and one edge inside a
shrunk node of G. (Thin dashed edges represent substructures with model M24.)

We next prove Claim 2.

Proof. Let us assume P(W) contains at least one edge of W; and let M” denote
the simple 2-matching on W obtained by performing an exchange on P(W).

The proof has three stages. In Stage 1’, we show that no triangle with two
edges in boundary(w) and one edge inside w can occur in M"”. Let W denote
the graph obtained by undoing the final shrinking that yielded w and adding to
this the edges in boundary(w). (Thus W may contain shrunk nodes.) In Stage
2', we show that no triangle with all its edges in W and all its edges inside w
can occur in M”. In Stage 3’, we show that no triangle with at least one edge
shrunk in W and all its edges inside w can occur in M”.

Stage 1’

Let us first consider the ways we can have a triangle 7" with two edges in
boundary(w) and one edge inside w. We first consider the possibilities resulting
from the pairs of substructures illustrated in Figure 30. In cases Al to A5, the
thin dashed edge represents a substructure with model M24. The remaining
edges in the figure have substructures M2, M5, or M6. (Note that we have shown
in Stage 1 above that no edge in a triangle formed by the edges in a substructure
with model M3 can be in a triangle of a simple 2-matching that results from an

90

exchange on P, so we need not consider any triangles T involving an edge in
such a substructure.) Cases Al to A7 illustrate all the ways substructures with
models M2, M5, M6, or M24 can form a triangle with one edge inside w, with
one exception: two substructures with model M24. We address cases Al - A7
and then the exception.

Suppose we have the situation in graph A1l in Figure 30 and the node a plays
the role of w. Let a’ and a” denote the endnodes inside a of the substructures
with models M24 and M2, respectively. Let us assume there is an edge a’a” inside
a. In order for a’b to be in M"”, we have that a’b is the uv-substructure. Hence,
we have that P(IW) follows a type 3 alternating path through a that starts with
ba’. Note that ba’ plays the role of a “cross edge” in all corresponding cases
in Subroutine 1* in the process of shrinking a. In all such cases, the specified
alternating path results in a triangle T containing two edges of M". Hence no
edge of T can occur in a triangle of M" due to a type 3 alternating path starting
with a’b.

Suppose we have the situation in graph A2 in Figure 30 and the node b
plays the role of w. Let ¥’ and b” denote the endnodes inside b of the edges
corresponding to the substructures with models M24 and M5, respectively. Let
us assume there is an edge b'b” inside b. In order for ab’ to be in M", we have
that ab’ is the uv-substructure. Hence, we have that P(WW) follows a type 3
alternating path through b that starts with ab’. Note that ab’ plays the role
of a “cross edge” in all corresponding cases in Subroutine 1* in the process of
shrinking b. In all such cases, the specified alternating path results in a triangle
T containing two edges of M”. Hence no edge of T can occur in a triangle in
M" due to a type 3 alternating path starting with ab’.

Suppose we have the situation in graph A3 in Figure 30 and node a plays the
role of w. Let @’ and a” denote the endnodes inside a of the substructures with
models M24 and M5, respectively. An alternating path of type 3 for a’b is not
defined nor used in the algorithm. No alternating path of type 1 or 2 contains
a'b, hence M"" cannot contain T in those cases. The algorithm simply shrinks
nodes a and b together.

Suppose we have the situation in graph A4 in Figure 30 and the node a
plays the role of w. Let a’ and a” denote the endnodes inside a of the edges
corresponding to the substructures with models M24 and M6, respectively. Let
us assume there is an edge a’a” inside a. In order for a’b to be in M”, we have
that a’b is the uv-substructure. Hence, we have that P(WW) follows a type 3
alternating path through a that starts with a’b. Note that a’b plays the role
of a “cross edge” in all corresponding cases in Subroutine 1* in the process of
shrinking a. In all such cases, the specified alternating path results in the triangle
T containing two edges of M”. Hence no edge of T can occur in a triangle in
M" due to a type 3 alternating path starting with a’b.

Suppose we have the situation in graph A5 in Figure 30 and the node b plays
the role of w. Let ' and b denote the endnodes inside b of the substructures
with models M24 and M6, respectively. An alternating path of type 3 for ad’
is not defined nor used in the algorithm. No alternating path of type 1 or 2
contains ab’, hence M" cannot contain T in those cases. The algorithm simply

91

shrinks nodes a and b together.

Suppose we have the situation in graph A6 in Figure 30 and the node b plays
the role of w. Let & and b” denote the endnodes inside b of the substructures
with models M5 and M2, respectively. Let us assume there is an edge b'b”
inside b. Suppose the exchange on alternating path P(W) through b creates a
triangle in M”" with the edges ab’ and ab”. So, the path P(W) must contain
the edge b’'b”, which is not in M, and neither of the edges ab’ and ad”. At some
point while running the algorithm, we must first have shrunk the edge b'd”. If
it were not in a substructure, then it could not be on the alternating path P.
Let S; be the substructure that contained b'd” when it first shrunk. Consider,
in Subroutine 1*, all the edges that could play the role of ¥'b”, where ¥ and b”
shrink and there can exist edges ab’, ab” in M, where a is not shrinking. Among
those cases, consider these when there exists an alternating path that contains
b'b” but neither ab’ nor ab”. The only possibility is a substructure with model
M24 where nodes ¢ and d are identified. However, in this situation we would
have created a substructure with model M11 in Subroutine 2. At no future point
in the algorithm could the nodes a’ and @’ then shrink without also shrinking b,
hence the situation could not occur.

Suppose we have the situation in graph A7 in Figure 30 and the node a
plays the role of w. Let o’ and a” denote the endnodes inside a of the edges
corresponding to models M6 and M2, respectively. Let us assume there is an
edge a’a” inside a. Let us first assume a’a” is in M. Because a is a type 1
shrunk node with base edge a’b, a substructure S; with model M8 was previously
identified in a call to Subroutine 1, Step 1 (which is the only way to initially
form a substructure with model M8) and the nodes a, b, ¢ (using the labeling
for model M8 in Figure 11) were identified for shrinking. Consider the end of
this call, before the shrinking occurs. The edge a”b of M in A7 connected, say,
nodes b and d in S;. Let us consider the possible substructures S; at this point
in the algorithm that could contain edge @b of M. The edge of S; could be the
edge of M in a substructure with model M2; M3; M11 (either edge of M); M12
(the edge be); M13 (the edge ab); M14; M15; M17 or M18 (the edge ab); or M19
(either edge ab or de). For S; with model M2, we would have a forbidden pair of
substructures. For S; with model M3, we have established that a”b cannot occur
in a triangle of M after an exchange (and a substructure with model M3 cannot
transform to any other substructure; it can only shrink). For S; with model M11
(for edge ab), M12, M13, M17, M18, or M19, this cannot occur because in each
case these two substructures imply a di-cycle in the associated digraph D. So,
this can only occur for S; with model M11 using edge bc or model M14 using
edge ac (with two possible orientations of S;). Observe that these edges of M in
S; cannot change to a substructure with M2 as in our subsequent situation A7.
So, this situation cannot occur.

Let us next assume, for the A7 case, that the edge a’a’ is not in M. Note that
a base edge of a type 1 shrunk node is created only when we shrink a substructure
with model M8 in Subroutine 1, Step 1 (as discussed above). Furthermore, a
base edge for a type 1 shrunk node remains such an edge, unless it shrinks
into a larger shrunk node. Let us denote by x the first type 1 shrunk node

92

for which a’b was a base edge. Note that the only edges inside x and incident
with the base node that can be in an alternating path are the two edges of M
incident with it (since the base node was black in a substructure with model
MS8). So, @’ is incident with two edges of M that are inside x and the edge a’a”
cannot be inside z, since it must be in an alternating path in order to end up
in an updated M. Consider the point in the algorithm, call it time ¢, where
Subroutine 1* has finished a run and we are about to shrink a’a” for the first
time in Step 2 of Subroutine 1. Since a’a” is in an alternating path through
shrunk node a, it must be in a substructure at time ¢. The possibilities are a
substructure with model M6, M7, M8, M9, M17, M20, or M24. M6 and M7 are
not possible because the base node a”’ would be incident with two edges of M
inside a shrunk node, hence there can be no edge a”b in M. M8, M17, and M20
are not possible because each would imply a di-cycle in D. M9 is not possible
because this substructure with a’b is a prohibited pair. Thus a’a” must be a
substructure with model M24 and it must serve as the temporary substructure
for this shrinking since it must be in an alternating path through the shrunk
node a. We claim that, at time ¢ in the algorithm, the edge a”b, which is in
M, must be a substructure with model M2. Suppose this is not the case. By
assumption, we know that a’’b is a substructure with model M2 at the later time
in the algorithm being considered for this case A7. Hence, there must be some
time, with the shrinking at time ¢ or later, when a”’b switches to a substructure
with model M2. However, an examination of the cases in the algorithm when an
edge of M switches to a substructure with model M2 shows that no such edge
has each endnode either white or shrunk, as is the case for a”’b at time ¢t and
later. This is a contradiction, so a”’b is a substructure with model M2 at time
t. However, we have noted that at time ¢ the edge a’a” is a substructure with
model M24. Thus, rather than shrinking, the algorithm would have identified
(through Step 2, part 1 in the Main Algorithm) the triangle a’a”b in Subroutine
2 as satisfying case B2, where the triangle would have become a substructure
with model M14. This contradicts our assumption that a’a” shrinks just after
time ¢. So, there can be no edge a’a” not in M that can occur in an exchange
on an alternating path through shrunk node a.

Finally, let us consider the case of a triangle formed by two edges of the form
aw’ and aw”, where a is outside w; w’ and w” are inside w; both aw’ and aw”
are substructures with model M24; and w'w” is an edge inside w. Clearly, in
this case at most one of the two edges aw’ and aw” can be in M"; this would
be the edge that is the uv-substructure that created path P.

Stage 2’

For the remainder of the proof, we let W denote the graph obtained by undoing
the final shrinking that yielded w and adding to this the edges in boundary(w).
(Thus W may contain shrunk nodes.) Using our previous notation, let us say
the shrinking that yielded w was due to a temporary substructure in W with
endnodes u and v.

93

Figure 31: Origin of possible triangles in our updated simple 2-matching

In this stage, we address the possibility that M’ contains a triangle completely
contained in w with all its edges in W (hence no edges are inside a shrunk node
of W).

Note that when new alternating paths are defined in Subroutine 1*, they
are constructed using previously defined paths with a standard form, say P*,
P, P* and PY, plus, in some cases, an initial segment of the path that has a
non-standard form and involves a short path through a single substructure that
is being shrunk (where we exclude any initial edges outside w). For example,
consider a substructure with model M12 where a and b are the only nodes in
C(S;) U Ext(S;). In this case we shrink nodes a, b, and ¢. For pendant edge
dc we define the type 2 alternating path dc U ca U abU P U P*Y U P"; for
our purposes here we drop dc which is outside w to get our non-standard and
standard subpaths. And for a substructure with model M13 where a and b
are the only nodes in C(S;) U Ext(S;), we define the type 1 alternating path
cbU P U P" U P,

Consider a substructure obtained by unshrinking w. If the standard part of
P(W) passes through the substructure, then we can use the same arguments
from Stages 1 and 2 from earlier in the proof of the theorem to conclude that a
triangle containing an edge of the substructure cannot be in M”. Of course, all
triangles that are inside w, have all edges in W, and contain no edges of PW),
are not in M”.

Let us consider the cases where the path P(TW) contains a non-standard path
through a substructure. By examining Subroutine 1*, we see that in many cases
(except for a few special cases discussed below), the edges in these substructures
cannot occur in a triangle of M” using the same arguments as above. For
example, again consider a substructure S; with model M12. Suppose when
shrinking w we have the case that the nodes of S; corresponding to a and b are
the only nodes of S; in C(S;) U Ext(S;). Then S; shrinks and performing an
exchange on the type 2 alternating path for dc results in two of the three edges
of the triangle abc being in M", hence, none of these edges can be in a triangle
of M".

The cases when our previous arguments do not work involve substructures

94

with models M13, M16, M17, M18, M19, and M20. Let us focus on M13 and M16.
For an example, again consider a substructure S; with model M13. Suppose
when shrinking w we have the case that the nodes of \S; corresponding to a and
b are the only nodes of S; in C(S;) U Ext(S;). Then S; shrinks and performing
an exchange on the type 1 alternating path from node ¢ results in the triangle
having only the one edge ab in M”. Hence, it does not immediately follow that
this edge is not in a triangle of M" inside w, with all edges in W. So, let us
consider our list above of possible edges that can occur in a triangle of M”. By
applying our rules for combining substructures, it follows that ab cannot occur in
a triangle with an edge in substructures with models M2, M8, M9, M10, or M23.
The possible ways for the nodes a and b in S; to share a node with a substructure
with models M5 or M6 are shown in graph E1 in Figure 31. Observe that no
pair of the illustrated nodes x, y, and z can be identified to form a triangle
without violating our combination rules. Thus, the final possibility to obtain a
triangle in M containing ab is to use one substructure with model M5 or M6 (as
illustrated in graph E1) together with one substructure with model M24. The
possibilities are illustrated in graphs C1 and C3 in Figure 19, where the roles of
za and xb can be interchanged in C1. Note that these cases are identified and
dealt with in Subroutine 2 by transforming C1 and C3 to the substructures in
graphs C2 and C4, respectively. The logic for the case that .S; has model M16 is
similar and the details are illustrated in Figure 23. The same logic applies to
cases involving M17, M18, M19, and M20.

We now have shown that all triangles that are inside w, with all edges in W,
are not in M".

Stage 3’

Finally, we consider the possibility that there is a triangle in M with all
edges inside w and at least one edge inside a shrunk node of W. For this, we
recursively apply the arguments from Stages 1, 2, and 3 of the proof of the
theorem and Stages 1’ and 2’ from this proof of the claim to the shrunk nodes
in W.

This concludes the proof of the claim and the theorem.

O

O

Before proving the algorithm solves problem P3, we show the algorithm has
polynomial worst-case time complexity.

Proposition 10. The algorithm can be implemented with polynomial worst-case
time complexity.

Proof. In the Main Algorithm we have the following:

At the uppermost level, the algorithm repeatedly executes Step 0. Between
consecutive executions of Step 0, the algorithm repeatedly executes Step 1. Each
execution of Step 1 is followed by an execution of Step 2, 3, or 4. Each of these

95

executions ends with a return to Step 1, except Step 2, part 3, which is a return
to Step 0. To prove the result, we calculate a bound on the number of times
Step 0 is executed, and a bound on the number of times Step 1 is executed
between consecutive executions of Step 0. We then calculate bounds on the work
performed in Step 0 and Step 1 and between consecutive executions of Step 1.

We execute Step 0 at most |V| 4 1 times, since at the start of each execution,
except the first, we have added one edge to M in Step 2, part 3. Consider the
time between the starts of two consecutive executions of Step 0.

Observe that each execution of Step 0 requires O(|V|) time, up front, to
initialize the substructures. Just before returning to Step 0, we perform exchanges
on alternating paths in Step 2, part 3, which requires O(|V|) time.

Let us consider how many times Step 1 can be executed between consecutive
executions of Step 0. To get at this, consider the time between two consecutive
executions of Step 1. Steps 2 (except part 3), 3, and 4 all finish executions with
a return to Step 1. Step 2, part 1 calls Subroutine 2 where the total number
of substructures is reduced by at least one and then returns to Step 1. Step
2, part 2 creates a temporary substructure with model M24 and results in a
shrinking in Step 2, part 4, followed by a return to Step 1. Step 2, part 4, of
course, results in a shrinking. If we execute Step 3, part 1, then, in Subroutine 3,
we transform a grey or striped node (node ¢) to a white node and return to Step
1. If we execute Step 3, part 2, then, in Subroutine 4, we transform a striped
node (node v) into a black or grey node and return to Step 1. Otherwise, we
perform a shrinking in Step 2, part 4 or in Step 4. So, in each execution of Step
1, we either (1) reduce the number of substructures; (2) transform a grey or
striped node to a white node; (3) transform a striped node to a black or grey
node; or (4) perform a shrinking. We can perform a reduction in the number of
substructures at most |F| times, consecutively. A node can be transformed at
most twice (from striped to grey to white) for a total, over all nodes, of at most
2|V| transformations. And, we can perform a shrinking at most |V| times. So a
worst case scenario is to alternate between |E| substructure reductions (1) and
one node transformation (2) or (3) or one shrinking (4). This is at most 2|V||E|
or O(|E||V]) passes through Step 1.

We next find an upper bound on the time between the start of consecutive
executions of Step 1 during a single execution of Step 0.

Observe that the work in Step 1 itself requires at most O(|E|) operations to
identify the proper set of edges and check the types of their endnodes. We then
execute Step 2, followed by Step 2, part 1, part 2 (plus part 4), or part 4 alone;
or we execute Step 3; or we execute Step 4. Let us consider time bounds for
each of these executions.

Step 2: Selecting S; takes constant time if we keep a list of the standard
substructures and a list of the temporary substructures.

Step 2, part 1: Deciding if we have a situation described in Subroutine 2
is bounded by a constant. The update to the substructures in Subroutine 2 is
O(]V]), since a new alternating path may be created.

Step 2, part 2: The update to the substructures is O(|V]), since a new
alternating path is created. We then go to Step 2, part 4 and execute Subroutine

96

2, which, as determined below, requires O(|E||V|) time.

Step 2, part 4: Subroutine 1: Determining the set C' and initializing the sets
V(S;), C(Si), Unproc(S;), Proc(S;), Int(S;), and Ext(S;) requires O(|E|) time,
since there are O(]E|) substructures and each substructure is bounded in size by
a constant. This is done only once. Each time a substructure is considered in
Subroutine 1*, at least one node is changed from unprocessed to processed in
that substructure, hence we perform O(|E|) such updates. With each update,
we may also update the alternating paths (types 1, 2, and 3) associated with the
substructure; each alternating path update takes at most O(|V]) time. Thus,
each pass through Subroutine 1 takes at most O(|E||V|) time (again noting that
each substructure is bounded in size by a constant).

Step 3: Checking for such an edge uv requires at most O(|E|) time. The time
to update the substructures in Subroutines 3 and 4 is bounded by a constant.
Updating the alternating paths is bounded by O(|V]). So Step 3 is bounded by
O(|E]) time.

Step 4: Checking for a special substructure with model M5 or M6 requires
O(|E|) time. We then execute Subroutine 1, which, as determined above, requires
O(|E||V]|) time.

We can now see that the time between consecutive executions of Step 1,
during a single execution of Step 0, is bounded by O(|E||V]).

We can now compute a complexity bound for the entire algorithm: O(|V|(|V|+
|E|IVI(JE||V]))). Note that the first |V| is the number of times Step 0 is executed.
The following parentheses contain the time between consecutive executions of
Step 0, where the |V] is the time for Step 0 itself and the following |E||V] is
the number of times Step 1 is executed. The following parentheses contain the
time between consecutive executions of Step 1, between consecutive executions
of Step 0. This simplifies to O(|E|?|V|?). The proposition follows.

O

Observation: The complexity of the algorithm described in the proof of
Proposition 10 can be improved by better use of data structures to keep track
of the alternating paths. Our purpose here is only to show the algorithm is
polynomial.

Suppose the algorithm has stopped running. Using the final set of substruc-
tures, we identify a set of tri-blossom clusters of the input graph G. Consider
the collection of connected components, call it H, of the subgraph of G induced
by the shrunk nodes at the end of the algorithm. For each H € H, we construct
a tri-blossom cluster of G called F'(H). To begin, select an H € H and initialize
F(H) to be the subgraph of G corresponding to H, where the shrunk nodes in
H define the centers of F(H); i.e., the nodes inside each shrunk node of H are a
center of F'(H).

Before defining the petals for F'(H), we note some properties of the substruc-
tures. Since there are no temporary substructures at the end of the algorithm
and due to Proposition 5, we have that each substructure with model M2, M7,
M11, M12, M13, M14, M15, or M16 has at least one white node. Also due to

97

Proposition 5, we have the following: For each substructure with model M13 or
M17, at least one of nodes a and b is white; for each substructure with model
M18 or M20, node a is white; and for each substructure with model M19, at
least one of a and b is white and at least one of d and e is white. Due to Step 4
of the algorithm, we have that in each substructure with model M5, the node a
is white, and in each substructure with model M6, the node b is white.

With these properties, we next define petals for F'(H). After that we show
that our construction satisfies the properties T1-T8 of a tri-blossom cluster.

Every substructure with model M7, M11, M12, M14, or M15 that shares a
shrunk node with H is added to F'(H) as a tri-petal. Every substructure with
model M2, M5, or M6 that shares a shrunk node with H is added to F'(H) as an
edge-petal. For every substructure with model M13, M16, M17, M18, M19, or
M20, if node @ or b is in H, then ab is added to F(H) as an edge-petal. Similarly
for node d or e in M19. Thus, each white node in these petals plays the role of a
petal tip for F'(H).

In the following proposition, we show that F'(H), as defined above, satisfies
the properties of the tri-blossom clusters. We also prove another useful property.

Proposition 11. At the end of a run of the algorithm, let M be the final tri-free
simple 2-matching and let F(H) be a graph constructed from G, as described
above. Then F(H) is a tri-blossom cluster and is saturated by M.

Proof. Let us denote the centers for F(H) as C; ...C} and let us construct the
graphs Bjs(C;) as we did in Section 3. Consider an arbitrary Bys(C;) arising
from a shrunk node v. Let v, denote the base node inside v. By examining the
cases generated by our different types of petals defined for F'(H) together with
different combinations of shrunk nodes for these petals, we see that every petal
for By (C;) is one of the following;:

1. An edge-petal in M. (Examples: For a substructure with model M5 with
node b shrunk, the edge ab has this property for shrunk node b. Node b
may or may not be a root. For a substructure with model M11 with a and
b shrunk, the edge ab has this property for shrunk node a. Node a may or
may not be a root.)

2. A 2-tip tri-petal that has two edges in M, where exactly one of the two
edges of M is incident with a node inside v. (Example: For a substructure
with model M11 with a the only shrunk node, the triangle has this property
for shrunk node a.)

3. An edge-petal not in M that contains vy, where v has type 1. (Example:
For a substructure with model M6, the edge ab has this property for shrunk
node a. For a 1-tip tri-petal arising from a substructure with model M7,
edge ca has this property for shrunk node a and edge bc has this property
for shrunk node b. For a 1-tip tri-petal arising from a substructure with
model M14 where a is shrunk, the edge bc has this property for shrunk node

98

b. Note that, in this last example, bc is not the base edge, but essentially
plays that role.)

4. A 2-tip tri-petal that contains v, and has two edges in M that both contain
vp and one of which is the base edge for v. (Example: For a substructure
with model M11 with b the only shrunk node, the triangle has this property
for shrunk node b.)

5. A 2-tip tri-petal that contains v,, contains exactly one edge in M, and
the edge in M does not contain vy, where v has type 1 and its base edge
is contained in the tri-petal. (Example: For a substructure with model
M14 with only the node b shrunk, the triangle has this property for shrunk
node b.)

It follows from points 1 and 2 above and Properties A1, A2, and A3 (in
Section 5.4) that each node v’ inside v, different from vy, is incident with two
edges of M in By (C;), hence it is at its target value in Bps(C;). It also follows
that v is incident with at most one petal for Bys(C;) and that such a petal is
at its target value in Bps(C;). If we have the situation in point 3, then we have
vp incident with two edges of M (both inside v), hence vy is at its target value
in By (C;); the edge-petal is not in M, hence it is one below its target value
in By (C;). If we have the situation in point 4, then v, is at its target value in
By (C;), the petal is one below its target value in By (C;), and no other type of
petal listed can also contain vp. If we have the situation in point 5, then vy is at
its target value in B/ (C;), since v has type 1, the petal is one below its target
value in Bys(C;), and no other petal can contain v since the petal contains the
base edge for v.

Finally, suppose we have a petal from point 1 or 2 that is incident with vy.
If v, is deficient in M, then it is deficient by 1 where v is a root node, and
vp 18 incident with just the one petal, which is at its target value. If v is not
deficient, then v, must have a base edge in M. Hence the base edge is in M8,
M9, M13, M17, M18, or M19. None of these possibilities generates a new petal
at v,. Hence, vy, is one below its target value in By/(C;) and incident with just
the one petal, which is at its target value.

Property T5 follows immediately from this discussion. For Property T6, we
can conclude that Bps(C;) has an odd number of petals from the following: the
target for every node in Cj is 2; the target for every petal is odd; each node
in C; and each petal is at its target, except exactly one (it can be a node or
petal) that is below its target by 1; and the sum of the degrees of the edges of
M in Bp(C;) is even. The above discussion also demonstrates that By (C;) is
saturated by M. It then follows from Observation 1 (see page 12) that F'(H) is
saturated by M.

O

We next consider the following slight variation. Define H as above. For each
H € H, we construct a tri-blossom cluster of G called F'(H) to be the same as
F(H) except: For every substructure with model M13 or M16, if node a or b is

99

in H and node c is not in a substructure with model M22 that contains exactly
one edge, only then is abc added to F'(H) as a tri-petal. The following corollary
follows easily from Proposition 11.

Corollary 4.1. At the end of a run of the algorithm, let F'(H) be a graph
constructed from G, as described above, and let M be the final tri-free simple
2-matching. Then F'(H) is a tri-blossom cluster and is saturated by M.

Observation 2: An examination of our substructures and their models
shows that any edge of G with both endnodes shrunk in H is contained in a
1-tip tri-petal we have defined for F(H) and F’(H). Furthermore, the only edges
of G with one endnode shrunk in H and one endnode white are contained in
the petals for F(H) and F'(H). Consider an edge zy in G, where z is shrunk
and zy is not in a substructure. Then y cannot be white in F(H) (or F(H'));
and y cannot be shrunk. If there were such an edge, it would have become a
substructure with model M24, hence, in a substructure. Furthermore, y cannot
be grey in a tri-petal of F(H'). If it were then it would have been considered in
Step 3, part 1.

Theorem 5. The algorithm outputs a mazimum cardinality tri-free simple
2-matching.

Proof. Let M denote the tri-free simple 2-matching output by the algorithm.
We produce sets U, W, T, C, R, and R* such that the sum of the degrees of the
edges in M equals a1 + as + ag + oy — as.

At the end of the algorithm: Let U* be the set of grey nodes contained in a
substructure with model M22 that contains exactly one edge. Let R* denote the
remaining grey nodes. Let U be the set of black nodes plus U*. Let W be the
set of white nodes plus R*. Let 7 denote the triangles with no node in U* and
contained in substructures with models M7, M11, M12, M13, M14, M15, and
M16.

Let C denote the connected components of the subgraph of G induced by
the shrunk nodes. Note that the graphs in C are connected components of
G(V —U — W) since the nodes in G(V — U — W) are all the shrunk and striped
nodes, and there are no edges of G between a shrunk node and a striped node;
otherwise, Step 3 part 2 in the Main Algorithm would have been executed.
Observe that, by our definitions, C is the set H. For each C € C, consider
the subgraph that is the union of C, the triangles of 7 that share one or two
nodes with C, and the remaining edges from C to W (with their endnodes).
Let C* denote the subgraphs from this collection that are tri-blossom clusters
where the incident triangles of 7 are the tri-petals, and the edges from C to W,
that are not in a triangle of 7, are the edge-petals. From our definition of H,
Corollary 4.1, and Observation 2, the graphs in C* are the same as the graphs
F'(H), for all H € ‘H, which are tri-blossom clusters. The nodes in CN(C*) are
the nodes of G inside the shrunk nodes, which are the center nodes of C*. Set
R=V —-U—-W — CN(C*), which equals the set of striped nodes.

Note that, for each grey node r € R*, the triangle T, € 7 that contains r
satisfies the properties (1), (2), and (3) given in Section 4. (In particular, if

100

there were an edge, not in 7., from R* to V — (U U RU R*), then Step 3, part 1
would have been executed in the Main Algorithm.)

From C* construct the tri-blossom clusters C**. Observe that, by our choice
of C and R*, the tri-blossom clusters C** are precisely the tri-blossom clusters
F(H), for H € H, as defined above (see Observation 2).

Observe that each node in U is incident with two edges of M and the other
endnode of each such edge is either white or shrunk, hence not in U. Thus the
edges in E; contribute the amount oy to the sum of the degrees of the edges in
M.

As shown in Propostion 11, the edges in E5 contribute the amount «s to the
sum of the degrees of the edges in M.

Next consider F5 = y(RUR*)U E[RUR*,V —U — (RU R*)]. The nodes in
R are the striped nodes, each of which is incident with two edges of M that are
in E3. Also, the nodes in R* are grey nodes, hence each is incident with two
edges of M. The other endnode of these edges is striped, grey in R*, white, or
shrunk, hence these edges are also in Fs3, by our definitions. Every edge from a
node in R to anode in V — U — (RU R*) is in M; otherwise, Step 3, part 2 in
the Main Algorithm would have been executed. For each node r in R*, there
are two edges from r to nodes in V — U — (RU R*). These are the two edges,
rrq and rry, of the triangle 75, defined in Section 4. One of these edges is in M
and one is not. The edge 7,7, can be an edge-petal of a tri-blossom cluster in
C** or an edge in M with endnodes in W. Hence, the edges in E3 contribute
the amount a3 — |R*| to the sum of the degrees of the edges in M.

Next consider E; = v(W — R*) — F5. Since the nodes in W — R* are all
white, the substructures with an edge in E4 have models M2, M11 (which is a
triangle in 75"), M13 (just the edge ab), M17 (just the edge ab), M19 (just the
edge ab and/or edge de), or M24. However, no substructure with model M24 is
possible since we would have then executed Step 2 in the Main Algorithm. So,
the edges in E4 contribute the amount oy — 2|75°)| to the sum of the degrees of
the edges in M.

Hence, the sum of the degrees of the edges in M is a1 + as + a3 + a4 — a5
and, with Proposition 1, the result follows.

O

Corollary 5.1. Theorems 1 and 2 hold.

Proof. These follow immediately from the proof of Theorem 5.

8 Acknowledgements

I’d like to thank Gérard Cornuéjols and Bill Pulleyblank for introducing me
to the problem of finding tri-free 2-factors. This was back in the early 1980s
when I was a Ph.D. student. The bulk of my thesis was devoted to presenting a
polynomial-time algorithm for the problem (different from the one presented in
this paper). Gérard served as my Ph.D. advisor at Carnegie Mellon University

101

where we spent countless hours working together on this project. His generous
help and expert guidance were invaluable. Bill was kind enough to take me on
as a post-doc at the University of Waterloo where we had many helpful further
discussions of this problem. The revamped version of the algorithm that appears
in this paper was very much influenced by both Gérard and Bill. Furthermore,
through recent discussions, they helped improve the presentation in this paper.

I would also like to thank the anonymous referees whose work greatly improved
the paper.

References

[1] Maxim Babenko, Alexey Gusakov, and Ilya Razenshteyn. Triangle-free
2-matchings revisited. Discrete Mathematics, Algorithms and Applications,
2(04):643-654, 2010.

[2] Maxim A Babenko. Improved algorithms for even factors and square-free
simple b-matchings. Algorithmica, 64(3):362-383, 2012.

[3] Hans-Boris Belck. Regulédre faktoren von graphen. Journal fiir die reine
und angewandte Mathematik, 1950(188):228-252, 1950.

[4] Krist6f Bérczi. The triangle-free 2-matching polytope of subcubic graphs.
Technical report, Technical Report TR-2012-2, Egervary Research Group,
2012.

[5] Kristéf Bérczi and Yusuke Kobayashi. An algorithm for (n-3)-connectivity
augmentation problem: Jump system approach. Journal of Combinatorial
Theory, Series B, 102(3):565-587, 2012.

[6] Krist6f Bérczi and Laszlé A Végh. Restricted b-matchings in degree-
bounded graphs. In International Conference on Integer Programming and
Combinatorial Optimization, pages 43-56. Springer, 2010.

[7] Claude Berge. Two theorems in graph theory. Proceedings of the National
Academy of Sciences of the United States of America, 43(9):842, 1957.

[8] Claude Berge. Sur le couplage maximum d’un graphe. Comptes Rendus
Hebdomadaires des Séances de I’Académie des Sciences, 247:258-259, 1958.

[9] Sylvia Boyd, Satoru Iwata, and Kenjiro Takazawa. Finding 2-factors closer
to TSP tours in cubic graphs. SIAM Journal on Discrete Mathematics,
27(2):918-939, 2013.

[10] Sylvia C Boyd and William H Cunningham. Small travelling salesman
polytopes. Mathematics of Operations Research, 16(2):259-271, 1991.

[11] William Cook and William R Pulleyblank. Linear systems for constrained
matching problems. Mathematics of Operations Research, 12(1):97-120,
1987.

102

[12]

[13]

[14]

[15]

[16]

[17]

William John Cook. On some aspects of totally dual integral systems. Ph.
D. Thesis, Department of Combinatorics and Optimization, University of
Waterloo, 1983.

Gérard Cornuéjols and William R Pulleyblank. A matching problem with
side conditions. Discrete Mathematics, 29(2):135-159, 1980.

Gérard Cornuéjols and William R Pulleyblank. Perfect triangle-free 2-
matchings. In Combinatorial Optimization II, pages 1-7. Springer, 1980.

William H Cunningham. Matching, matroids, and extensions. Mathematical
programming, 91(3):515-542, 2002.

William H Cunningham and Yaoguang Wang. Restricted 2-factor polytopes.
Mathematical programming, 87(1):87-111, 2000.

Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices.
Journal of research of the National Bureau of Standards B, 69(125-130):55—
56, 1965.

Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics,
17:449-467, 1965.

Jack Edmonds, Ellis L Johnson, and Scott C Lockhart. Blossom i: a
computer code for the matching problem. IBM TJ Watson Research Center,
Yorktown Heights, New York, 1969.

Marshall L Fisher, George L Nemhauser, and Laurence A Wolsey. An
analysis of approximations for finding a maximum weight hamiltonian
circuit. Operations Research, 27(4):799-809, 1979.

Andras Frank. Restricted t-matchings in bipartite graphs. Discrete Applied
Mathematics, 131(2):337-346, 2003.

Tibor Gallai. On factorisation of graphs. Acta Mathematica Hungarica,
1(1):133-153, 1950.

Tibor Gallai. Maximum-minimum sétze iiber graphen. Acta Mathematica

Hungarica, 9(3-4):395-434, 1958.
Jim Geelen. Personal communication. 2000.

Martin Grotschel and William R Pulleyblank. Clique tree inequalities and
the symmetric travelling salesman problem. Mathematics of Operations
Research, 11(4):537-569, 1986.

David Hartvigsen. Eztensions of matching theory. PhD thesis, Carnegie
Mellon University, under the supervision of Gérard Cornuéjols, 1984.

David Hartvigsen. Finding maximum square-free 2-matchings in bipartite
graphs. Journal of Combinatorial Theory, Series B, 96(5):693-705, 2006.

103

[28]

[29]

[30]

[31]

David Hartvigsen and Yanjun Li. Maximum cardinality simple 2-matchings
in subcubic graphs. STAM Journal on Optimization, 21(3):1027-1045, 2011.

David Hartvigsen and Yanjun Li. Polyhedron of triangle-free simple 2-
matchings in subcubic graphs. Mathematical Programming, 138(1-2):43-82,
2013.

Pavol Hell, David Kirkpatrick, Jan Kratochvil, and Igor K#iz. On restricted
two-factors. SIAM Journal on Discrete Mathematics, 1(4):472-484, 1988.

Zoltan Kiraly. Cy-free 2-factors in bipartite graphs. Techni-
cal Report TR-2001-13, Egervary Research Group, Budapest, 2001.
www.cs.elte.hu/egres.

Yusuke Kobayashi. A simple algorithm for finding a maximum triangle-free
2-matching in subcubic graphs. Discrete Optimization, 7(4):197-202, 2010.

Yusuke Kobayashi. Triangle-free 2-matchings and M-concave functions on
jump systems. Discrete Applied Mathematics, 175:35-42, 2014.

Yusuke Kobayashi. Weighted triangle-free 2-matching problem with edge-
disjoint forbidden triangles. In International Conference on Integer Pro-
gramming and Combinatorial Optimization, pages 280—-293. Springer, 2020.

Yusuke Kobayashi, Jacint Szabd, and Kenjiro Takazawa. A proof of cun-
ninghams conjecture on restricted subgraphs and jump systems. Journal of
Combinatorial Theory, Series B, 102(4):948-966, 2012.

Marton Makai. On maximum cost K ;-free t-matchings of bipartite graphs.
SIAM Journal on Discrete Mathematics, 21(2):349-360, 2007.

Yunsun Nam. Matching theory: Subgraphs with degree constraints and
other properties. PhD thesis, University of British Columbia, under the
supervision of Richard Anstee, 1994.

George L Nemhauser and Leslie Earl Trotter. Vertex packings: structural
properties and algorithms. Mathematical Programming, 8(1):232-248, 1975.

Gyula Pap. Combinatorial algorithms for matchings, even factors and
square-free 2-factors. Mathematical programming, 110(1):57-69, 2007.

Julius Petersen. Die theorie der reguldren graphs. Acta Mathematica,
15(1):193, 1891.

WR Pulleyblank. Faces of Matching Polyhedra, Univ. of Waterloo, Dept.
Combinatorics and Optimization. PhD thesis, Ph. D. Thesis, 1973.

M Russell. Restricted 2-factors. Master’s thesis, University of Waterloo,
under the supervision of William Cunningham, 2001.

104

[43]

[44]

[45]

[46]

Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency,
volume 24. Springer Science & Business Media, 2003.

Kenjiro Takazawa. A weighted K;:-free t-factor algorithm for bipartite
graphs. Mathematics of Operations Research, 34(2):351-362, 20009.

Kenjiro Takazawa. Decomposition theorems for square-free 2-matchings in
bipartite graphs. In International Workshop on Graph-Theoretic Concepts
in Computer Science, pages 373-387. Springer, 2015.

Kenjiro Takazawa. Excluded t-factors in bipartite graphs: A unified frame-
work for nonbipartite matchings and restricted 2-matchings. In International
Conference on Integer Programming and Combinatorial Optimization, pages
430-441. Springer, 2017.

Kenjiro Takazawa. Finding a maximum 2-matching excluding prescribed
cycles in bipartite graphs. Discrete Optimization, 26:26-40, 2017.

William T Tutte. The factorization of linear graphs. Journal of the London
Mathematical Society, 1(2):107-111, 1947.

William T Tutte. The factors of graphs. Canadian Journal of Mathematics,
4:314-328, 1952.

William T Tutte. A short proof of the factor theorem for finite graphs.
Canadian Journal of Mathematics, 6:347-352, 1954.

Oliver Vornberger. Easy and hard cycle covers. Preprint, Universitdt
Paderborn, 1980.

105

