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Abstract

Consider an electronic musical instrument that plays sequences of
notes, one at a time, from the Western chromatic scale. The instrument
has a set of keys and pressing each combination of keys with the �ngers
corresponds to a note. In this paper we consider the question: What
mapping from combinations of keys to notes results in an instrument that
is optimally easy to play? We operationalize the notion �easy to play�
by looking for mappings that (1) require a small number of simple �nger
movements when playing various common structured sequences of notes
(such as scales and arpeggios) as well as samples of melodies from West-
ern music; and (2) are conceptually simple, where the keys are partitioned
into two groups so that one group selects the octave and the other group
selects the pitch class.

Keywords: musical instrument design; Gray codes; combinatorial op-
timization

AMS codes: 90C27, 05A99

1 Introduction

In this paper we consider musical instruments that play sequences of notes,
one at a time, from the Western chromatic scale. In particular, we consider
instruments that have a set of keys (or locations) such that pressing any com-
bination of them with the �ngers results in an individual note. For example,
an instrument could have 15 keys and pressing keys 1, 2, 4, and 7 would allow
the musician to produce middle C. We are interested in �nding assignments (or
mappings) of key combinations to notes that yield instruments that are easy
to play. (The method of producing the sound �reed vibration, lip vibration,
string bowing, and so on �does not concern us.) In this introduction we discuss
some related existing instruments, the type of instruments we design, and what

1



we mean by �easy to play.�We also introduce our results, discuss related work,
and give an outline of the paper.
This work extends previous work by the author in [13]. Although the

background material in this introduction is closely based on the introduction in
[13], most of the results in this paper are novel. The contributions of this paper
and how it di¤ers from [13] are discussed at the end of this section.
Many traditional, or acoustic, instruments are of the type just described.

The woodwinds are perhaps the best examples, but the orchestral strings, gui-
tars, and keyboards are also examples. (Although these latter instruments can
also play more than one note at a time, we are not concerned with this fea-
ture in this paper.) We point out that for traditional instruments, the possible
mappings from combinations of keys to notes are greatly limited by physics.
However, for electronic instruments of this type, such limitations are largely
relaxed. Hence our purpose in this paper is to focus on electronic instruments
and to exploit this freedom.
Examples of electronic instruments of this type include the Electric Wind

Instrument (EWI) by Akai, the Yamaha WX, the Morrison Digital Trumpet (by
Steve Marshall and James Morrison), the digital �ute (by Yunik, Borys, and
Swift; see [31]), the Bleauregard (by Gerald Beauregard; see [1]), the MIDI horn
(by John Talbert; see [5]), the Hirn (by Perry Cook; see [6]), and the Pipe (by
Gary Scavone; see [26]). The book [19] by Miranda and Wanderley discusses
the last �ve of these instruments in detail. (These electronic instruments work
by sending MIDI signals to a synthesizer followed by a speaker.) Many other
�toy� instruments of this sort have been designed for handheld devices such
as the iPhone; examples are WIVI BandTM by Wallander Instruments and the
OcarinaTM by Smule. With the exception of the digital �ute, the Bleauregard,
and the OcarinaTM , the way these electronic instruments assign combinations
of keys to notes is based on the traditional examples.
We next informally introduce the type of instrument we study by consid-

ering an example. The instrument in our example has seven keys, labeled
1; 2; : : : ; 7, and can play eight consecutive 12-note octaves, whose notes are
labeled C1; C#1; D1; D#1; : : : ; B1; : : : ; C8; : : : ; B8: (In this standard music no-
tation, the subsripts denote the octave and the other symbols represent pitch
classes, that is, notes that are separated by an integral number of octaves.) The
mapping from the key combinations (more often called �ngerings) to the notes
in the �rst two octaves is shown in Figure 1. Consider the two matrices of 0s
and 1s in the rectangles: The rows are labeled by the notes and the columns
are labeled by the keys. The 1s in each row indicate, by their column labels,
a subset of keys (called a primary �ngering) that the musician presses to play
the note labeling that row. For example, E1 is played by pressing the keys 4
and 5. Observe that some notes, such as B1, have a second string of 0s and 1s
to the right, outside the rectangle, indicating a second subset of keys (called an
alternate �ngering) that describe an alternate way to play the note labeling that
row. For example, B1 can be played by pressing the keys 6 and 7 or by pressing
the keys 1, 5, and 7. (Alternate �ngerings are common with woodwinds where
they help make certain passages easier to play. Our alternate �ngerings play a
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Figure 1: Example of the �rst two octaves of a �ngering system.

similar role.)
The keys for this instrument could be arranged, for example, in a row on

a cylinder resembling a traditional woodwind instrument (such as the Akai
EWI and Yamaha WX) or on a touch sensitive computer screen. Because the
instrument has only seven keys, a musician can dedicate one �nger to each key
and therefore sequences of notes can be played with combinations of simple up
and down �nger movements. We contend that this should contribute to ease of
play. Contrast this, for example, with the situation for stringed instruments and
keyboards, which typically have many more keys or locations than �ngers. For
these instruments a musician must contend, for each note played, with �nding
the key or location to be pressed as well as deciding which �nger to use. (Note,
however, that keyboards have a di¤erent ease-of-play advantage: the mapping
from keys to notes is simpler than our proposed instruments in the sense that
it is one-to-one with a left-to-right, low-pitch-to-high-pitch orientation.)
The instrument in Figure 1 has an additional property (not completely ev-

ident in the �gure since only two octaves are displayed): Two notes have the
same primary �ngerings on keys 1; 2; 3 if and only if they are in the same octave;
and two notes have the same primary �ngerings on keys 4; 5; 6; 7 if and only if
they are in the same pitch class. Such instruments are called partitionable. For
example, in Figure 1, the primary �ngerings for A1 and B1 agree on keys 1; 2; 3
and the primary �ngerings for B1 and B2 agree on keys 4; 5; 6; 7. This means
that a musician needs to learn only eight combinations on the �rst three keys
and 12 combinations on the last four keys in order to play all the notes in the
instrument�s 96 note range (using primary �ngerings). Furthermore, this clas-
si�cation of the notes by octaves and pitch classes is conceptually quite natural
for musicians. We believe this partitionable property should also contribute
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to making our instruments easy to play. (A somewhat di¤erent design of the
octave keys can make this type of instrument even easier to play; see Remark
1.)
All instruments we present in this paper have the form of the above example:

They are partitionable with seven keys and a range of eight octaves. We limit
our consideration to the seven-key, eight-octave model to make our de�nitions
and analysis easier to present, and because it yields a practical instrument.
However, the same approach can be used for instruments with any range size
and corresponding number of keys. The results would be essentially identical.
In order to compare di¤erent mappings we select several collections of se-

quences of notes that, in whole or part, occur commonly in Western music. First,
we consider various scales and arpeggios over the range of the instrument (e.g.,
see [22], [17], and [25]). Virtually all introductory books, for learning to play the
type of instrument considered in this paper, stress the importance of learning
to play scales and arpeggios. In addition, we consider collections containing all
intervals of a �xed size over the range of the instrument. Finally, we consider
two collections of melodies, one is a sample mostly from well-known European
composers and the other is a sample from folk music. These samples appeared
in a paper by Vos and Troost [28], in a di¤erent context. We compare mappings
by measuring how di¢ cult it is to play these collections using the mappings.
Since each key has a dedicated �nger, we use a function that assigns a cost based
on the number of �ngers that move up or down, pressing or releasing a key, in
playing one note after another in a sequence of notes. In the simplest case, this
function would simply count the number of �nger movements. For example,
the di¢ culty (or cost) of playing the sequence A#1; C2; D2 on the instrument
in Figure 1, using primary �ngerings, would be 3, since keys 1 and 6 change in
playing A#1 then C2, and key 4 changes in playing C2 then D2. Observe that
if we use the alternate �ngering for A#1, then the cost of playing this sequence
would drop to 2. The cost of playing a collection of sequences with primary �n-
gerings is simply the sum of the costs of playing each sequence in the collection
using the primary �ngerings. The cost of playing a collection of sequences with
free �ngerings is the best total cost that can be achieved where both primary
and alternate �ngerings are allowed on each sequence. (Hence �nding the cost
of playing a sequence of notes using free �ngerings is an optimization problem.)
In general, we seek to identify instruments that have low cost when playing
common sequences of notes. We contend that this too contributes to making
an instrument easy to play. We also consider some more general cost functions
for measuring the di¢ culty of playing certain sequences of notes. We see that
many of our main results continue to hold if we merely assume that the cost
function increases with the number of �nger movements.
Observe that with seven keys there are 27 = 128 di¤erent �ngerings, which

is the minimum number of keys required to play the 96 notes in eight octaves.
Other instrument designs with more keys can also satisfy our ease-of-play crite-
ria. We comment on one possibility in Remark 1. However, we show, perhaps
a bit surprisingly, that, in terms of counting simple �nger movements, there is
no advantage to using more than seven keys for the primary �ngerings, in a
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number of cases.
There are a huge number of di¤erent partitionable instruments. In fact,

there are approximately 8:7�1011 di¤erent mappings for the primary �ngerings
on the keys 4; 5; 6; 7. (See Section 7 for the easy calculation.) Hence enumerat-
ing the mappings to �nd the best for a particular collection of note sequences
is not possible. Another approach to �nding optimal mappings is to use the
techniques of optimization, which have been applied to similar problems (e.g.,
the assignment problem; see [2]). However, these techniques do not seem ap-
plicable in this case, partly due to the unique form of the cost measure and the
existence of alternate �ngerings. So we have chosen a di¤erent strategy. We
primarily limit our search for low cost instruments to a special class of parti-
tionable instruments called basic. (The basic instruments are a subclass of what
we call interval-based instruments. These classes are de�ned in Section 2.) We
show that this class has some nice properties. Roughly speaking, for a basic
instrument, the keys 4; 5; 6; 7 are partitioned into subsets, so that each subset
tends to control movement between notes in interval jumps of a �xed size. In
particular, notes that di¤er by the associated interval have primary �ngerings
that often di¤er on only one key. The example in Figure 1 is such an instrument.
It has the property that keys 4; 5; 6 often allow low cost movement of two-note
intervals and key 7 often allows low cost movement of one-note intervals. For
example, the following pairs of notes all di¤er by one key among the keys 4; 5; 6:
C1 and D1; C#1 and D#1; and D1 and E1. And the �ngerings for C1 and C#1;
and D1 and D#1 di¤er only on key 7. Although this is not evident from just
the �rst two octaves of the instrument in Figure 1, the primary �ngerings on
keys 1; 2; 3 have been similarly chosen so that movements of one octave always
require the movement of only one �nger. (It turns out that this instrument is
optimal using primary �ngerings for playing most standard scales consisting of
intervals of size 1 and 2.) The trick behind the construction of basic instruments
is the use of Gray codes, which were originally used in error correction of digital
communications (see [10] and [23]).
Let us brie�y describe our main results. We begin by enumerating all the

basic instruments and calculating the costs of each (using primary and free
�ngerings) on several collections of note sequences, as discussed above. This
calculation is carried out with a piece of software written by the author. We
show that one of these basic instruments (instrument 7.1) is an optimal par-
titionable instrument, using primary �ngerings, on a variety of scales: major,
melodic minor (ascending and descending), whole tone, and diminished, for ex-
ample. We �nd another basic instrument is an optimal partionable instrument,
using primary �ngerings, over the chromatic scales. And for all collections of
�xed intervals (except those of size 5 and 7), we �nd basic instruments that are
optimal partitionable instruments, using primary �ngerings. (We also present
optimal partitionable, but non-basic, instruments for collections of �xed inter-
vals of size 5 and 7.) From these �xed interval results, we �nd optimal parti-
tionable instruments for diminished 7 arpeggios and augmented triad arpeggios.
In addition, we present a few cases of basic instruments that are optimal par-
titionable instruments using free �ngerings. Thus the basic instruments appear
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to be a good source of low cost (easy-to-play) instruments. We also report the
optimal basic instruments for the harmonic minor and pentatonic scales, and
various other types of arpeggios. Furthermore, we �nd that instrument 7.1 is
the optimal basic instrument, using primary �ngerings, over both collections of
melodies. We show that all the optimal partitionable instruments we present
cannot be improved upon by considering partitionable instruments with more
than seven keys. Hence our decision to consider instruments with seven keys
does not appear to be an important limitation for a range of eight octaves.
We also compare our designs with some existing instuments (e.g., the clarinet
and saxophone) and �nd that, in almost all cases, our new instruments have
signi�cantly lower cost on all collections of note sequences. We also show the
robustness of our results for instruments 1.2 and 7.1 by considering more general
cost functions where the cost is only required to increase with the number of
�nger movements.
In short, the main contributions of this paper are the discovery of an impor-

tant class of special instruments (the basic instruments), some new suggestions
for good �ngering systems, and, for future research, a general methodology and
some benchmarks to use in searching for better �ngering systems.

Remark 1 A practical implementation. The Akai EWI and Yamaha WX,
mentioned above, have been sold for a number of years and are used by pro-
fessional musicians. (The author plays the EWI as a hobbiest.) They allow
the user to select from several �ngering systems, all of which are partitionable
versions of �ngering systems on tradititional instruments such as the saxophone
or trumpet. However, instead of having three keys 1; 2; 3 that select the octave
as in our instruments, both have a row of keys (actually rollers on the EWI)
along which the musician slides a thumb to select the octave. Hence there is
one key for each octave in the instrument�s range. The cost of moving from one
octave to an adjacent one on these keys can reasonably be measured as a single
�nger movement, comparable in cost to pressing or releasing a single key. (The
movement is from side to side by a thumb instead of an up and down movement
of a �nger.) Hence the approach to measuring costs that we use for our seven-
key instruments exactly carries over to the way the EWI and WX are designed.
The �ngering systems introduced in this paper could easily be implemented in
this way resulting in instruments with only four keys to be pressed for the pitch
classes in combination with the row of octave keys. (See Remark 6.) (In fact,
the EWI and WX could be reprogrammed to implement our systems.) Hence a
musician would need to learn only 12 primary �ngerings for the pitch classes in
order to play the entire eight octave range (since the octave selection is greatly
simpli�ed). Furthermore, the four �ngers for the pitch-class keys could be the
index and middle �ngers of both hands, which would eliminate the ergonomic
di¢ culties inherent in using weaker �ngers with less independence of movement.
(E.g., see [14] and [18].) These tricks should result in instruments that are even
easier to play. We present our results in this paper using the seven-key instru-
ment model because the de�nitions and analysis are a bit nicer.

We next discuss some related work. To begin, the results in this paper extend
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the results in [13]. The general de�nition of an instrument design problem and
the methodology for comparing instruments by computing costs over common
sequences of notes were introduced in [13]. The speci�c problem of �nding an
optimal �ngering system for collections of scales consisting of adjacent intervals
of size 1 and 2 was considered in [13]. Optimal instruments were presented
for both partitionable and non-partitionable instruments using only primary
�ngerings. They are closely related to instruments 1.2 and 7.1 in this paper.
The current paper adds computer search to the purely mathematical approach
for �nding optimal instruments in [13], which allows us to consider more general
sequences of notes (other scales, the arpeggios, and intervals) and the costs of
allowing alternate �ngerings. This paper also adds consideration of sequences
from samples of Western music melodies. The general class of basic instruments
and the analysis of that class are also new to this paper. Furthermore, this
paper addresses the issue of alternate cost functions.
The Bleauregard [1], mentioned above, uses a �ngering system that, like our

designs, has one �nger per key, is partitionable, and is based on Gray codes. Its
system is closely related to one of the designs presented in this paper (instru-
ment 1.2); both are optimal for collections of chromatic scales. An interesting
psychological justi�cation for the Bleauregard system, called the helical model
(see [8] and [27]), is discussed in [1].
Sayegh [24] studied the problem of �nding e¢ cient �ngerings for playing se-

quences of notes on the guitar, where issues of alternate �ngerings, selecting the
�nger to use, and the quality of the sound were considered. Sayegh considered
using expert systems, optimization, and a connectionist approach. When one
is given a single sequence of notes and a speci�c instrument (including many
traditional instruments) with alternate �ngerings for some notes, Worrall and
Sharp [30] obtained a patent on a process for �nding optimal �ngerings. When
one is given a sequence of notes to be played on the piano, Parncutt et al [20],
Hart, Bosch, and Tsai [12], and Kasimi, Nichols, and Raphael [15] explored
a dynamic programming approach that searches for the optimal �nger to use
for each note. (We use a similar approach when evaluating the cost of using
alternate �ngerings in this paper.)
A related problem of designing easy-to-play keyboard instruments has also

been widely studied. A survey of many such designs can be found in Keislar
[16]. Examples include the work of Bosanquet, Hen�ing, Janko, Fokker, Wilson,
and Wesley. In this work, ease-of-play is achieved through designs where any
given sequence of notes (or chord) is played with the same �nger movements
under any transposition. (This is accomplished by designs with many more keys
than a piano with the same range.) This property does not hold for the designs
presented in this paper where ease-of-play refers to total �nger movements for
given sequences of notes played over all transpositions (and our instruments
have many fewer keys than comparable keyboard instruments).
In the non-musical realm of typing, the Dvorak keyboard [9] was developed

to be more e¢ cient, in terms of �nger movements, than the standard QWERTY
keyboard layout. The typing keyboard design problem has also been studied
using optimization in [3] and [21]. The modern stenotype machine is a yet more

7



e¢ cient device for typing. Interestingly, it requires the operator to typically
press more than one key at a time, like our instruments in this paper; with
this device, experts can type over 200 words per minute, far faster than with a
traditional one-key-per-letter layout.
The paper is organized as follows. In Section 2.1 we present a precise de�n-

ition of the instruments we consider. In Section 2.2 we de�ne the cost measure
we use to compare di¤erent instruments. In Section 2.3 we de�ne the collec-
tions of note sequences we use in our analysis. In Section 2.4 we de�ne the
basic instruments. Section 3 and the appendix contain our main results. In
Section 4 we show the robustness of one of our best instruments by considering
more general cost functions. We also discuss how a more precise cost function
could be discovered by outlining a possible experiment. Section 5 summarizes
our results, and some open questions are presented in Section 6. Finally, an
appendix (found on-line) contains proofs of the mathematical statements in the
paper and some additional results addressing when some of our instruments are
optimal. Also on-line is the Excel spreadsheet that contains the VBA code used
for the computer calculations in the paper.

2 De�nitions

In this section we de�ne the general instruments we consider. We discuss how
we compare two di¤erent instruments. And we introduce a special class of
instruments on which our later analysis focuses.

2.1 The general instruments

Let us describe the instruments we study. Our instruments play sequences of
notes, one at a time, from the Western chromatic scale. A note is written N(i),
where i is an integer and N(i+1) is a half step higher than N(i). We sometimes
refer to a note simply by its index i. For convenience, we assume our instruments
can play all the notes N(0); : : : ; N(95). This is called the instrument�s range.
An instrument might also be able to play some notes outside this range (e.g.,
N(�1) or N(96)).
The actual pitch to which N(0) corresponds can be set arbitrarily. The range

size we have chosen turns out to be convenient given the de�nitions to follow
and is reasonable in practice as it is slightly larger than a piano�s range. The
approach taken in this paper can easily be adapted to ranges of di¤erent size.
We let octave 1 denote the 12 notes N(0); : : : ; N(11); we let octave 2 de-

note the 12 notes N(12); : : : ; N(23); and so on. We let pitch class 1 de-
note the notes N(0); N(12); : : : ; N(84); we let pitch class 2 denote the notes
N(1); N(13); : : : ; N(85); and so on. Notes in the same pitch class are separated
by an integral number of octaves and have a similar sound quality. Hence our
instruments have eight octaves and 12 pitch classes.
An instrument has a set of seven keys, labeled 1; : : : ; 7. Any subset of the

keys is called a �ngering, hence an instrument has 27 = 128 di¤erent �ngerings.
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An instrument has a mapping from the �ngerings to the notes such that every
note in the range has at least one �ngering mapped to it. Observe that seven
is the minimum possible number of keys so that an instrument can have at
least one �ngering mapped to each note in the range. (As we show in Section
3, this restriction to seven keys is often not a limitation.) This mapping is
described by an instrument matrix, which has seven columns and 128 rows; and
all its entries are 0s and 1s. The columns of the matrix are labeled by the keys.
Each row of the matrix is labeled by a note such that every note in the range
occurs at least once, and two or more rows can have the same label. (We allow
notes outside the range to also be labels.) Every row of the matrix describes a
di¤erent �ngering, where the 1s indicate, by the corresponding column labels,
the keys in the �ngering. Each �ngering is mapped to the corresponding row�s
label. (Hence, a musician plays a note by selecting a row labeled by that note
and pressing the keys indicated by the 1s in the row.) The order of the rows in
such a matrix is not important, but we assume, for convenience, that the rows
are in ascending order by the note labels. (Observe that this ordering is not
necessarily unique, since we allow more than one �ngering to be mapped to the
same note.)
Since each note N(k) in the range can have more than one �ngering mapped

to it, we designate for each N(k) a special �ngering, called the primary �n-
gering, that is mapped to N(k). Its row in the instrument matrix is denoted
pr(N(k)). These are the �ngerings that a musician would �rst learn and would
typically use when playing. Non-primary �ngerings for N(k) (if any) are called
its alternate �ngerings. These �ngerings can be used on occassion by a musician
to make certain passages easier to play. Primary and alternate �ngerings play
an important role, for example, for woodwinds. Observe that for notes playable
by an instrument, but outside its range, we do not specify primary or alternate
�ngerings. (The reason for this is due to the speci�c primary �ngerings that we
de�ne later in the paper.)
Examples of the instrument matrices (i.e., the �rst two octaves) for two

instruments are given in Figure 2. The matrix for instrument 7.1 is given on
the left of the �gure. The matrix for instrument 9 is given to the right of the
vertical double lines (The three matrices to the right of each instrument matrix
describe the underlying structure of the matrix and will be discussed in Section
2.4.) Only the rows for the �rst two octaves of the matrices are shown. The
rows with large font are primary �ngerings, those with small font are alternate
�ngerings.
We next de�ne a special type of instrument that will be a main focus of

this paper. (As discussed in the introduction, these special instruments should
prove easy to play.) An instrument is called partitionable if its primary �ngerings
satisfy the following:

� Two notes have the same primary �ngerings on keys 1; 2; 3 if and only if
they are in the same octave.

� Two notes have the same primary �ngerings on keys 4; 5; 6; 7 if and only
if they are in the same pitch class.
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In summary, an instrument has the following properties: an eight octave
range; seven keys; a mapping from the �ngerings to the notes such that every
note in the range has at least one �ngering mapped to it; and a choice of a
primary �ngering for each note in the range. The mapping is described by
an instrument matrix with row and column labels. Due to our ease-of-play
objective, we focus our attention on partitionable instruments.
Referring to Figure 2, we show (in Section 3) that instrument 7.1 is optimum

for primary �ngerings over all partitionable instruments for playing a variety of
scales that include major scales, melodic minor scales, whole tone scales, and
diminished scales (see [25] for de�nitions), and is also optimum over both of
our collections of melodies. We show instrument 9 is optimum for primary
�ngerings over an important subclass of partitionable instruments (called basic)
for playing major and minor arpeggios.

2.2 Comparing instruments

In this section we consider how to compare a set of di¤erent instruments so
we can �nd the �best� in the set. The basic idea is to specify a collection of
note sequences and to see for each instrument how many �nger movements are
required to play all the sequences. Instruments with the minumum number of
movements are considered the best. Because we allow alternate �ngerings for
some notes, some care is required in making this notion precise.
We begin by introducing a notion of �distance between �ngerings,�which is

a measure of the di¢ culty of playing one �ngering followed by another.
Consider an instrument with instrument matrix M . Let f1 and f2 be two

rows of M , corresponding to two �ngerings. We de�ne the Hamming distance
from f1 to f2, denoted Hdist(f1; f2), as follows:

Hdist(f1; f2) =
7X
i=1

jf1(i)� f2(i)j :

In short, the Hamming distance between two �ngerings is the number of keys
that change from pressed to not pressed, or vice versa, as a musician plays one
�ngering followed by the other. (The Hamming distance was �rst de�ned in [11]
in the context of information theory.) For an example, consider the matrix for
instrument 7.1 in Figure 2. Observe that the distance between the �ngerings
for N(0) and N(1) is 1 and the distance between the �ngerings for N(1) and
N(2) is 2. (Given the instruments and sequences we consider, the range of the
Hdist function is f1; 2; 3; 4; 5g in this paper.)
Let us remark that the Hdist function is only one possible measure of the

di¢ culty of playing two notes, one after the other. It captures the notion that
the di¢ culty of playing two consecutive notes increases as more �ngers must
change positions, especially under the assumption of Remark 1, where only �ve
strong and independent �ngers are needed. However, it may not be the case, for
example, that moving two �ngers is twice as di¢ cult as moving one �nger, or
that moving three �ngers is three times as di¢ cult as moving one �nger, as the
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Figure 2: Two instrument designs.
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Hdist function implies. We discuss some more general measures of di¢ culty in
Section 4, where we also suggest how the notion of di¢ culty could be quanti�ed
and studied experimentally.
Let fs1; : : : ; sqg be a sequence of notes in the range of the instrument (where

q � 2). We de�ne the cost of playing fs1; : : : ; sqg with primary �ngerings to be

Costpr(s1; : : : ; sq) =

q�1X
i=1

Hdist(pr(si); pr(si+1)):

Finally, for any given collection C of sequences of notes in the range of the
instrument, we de�ne:

TotalCostpr(C) =
X
S2C

Costpr(S):

This is a measure of how di¢ cult it is to play all the sequences in C using only
the primary �ngerings.
We let fr denote an arbitrary function from each note in the range of an

instrument to a single row of M labeled by that note. Hence the fr function
selects a �ngering for each note; the pr function is an example of an fr function
where the primary �ngering is always selected. We now de�ne the cost of playing
fs1; : : : ; sqg with free �ngerings to be

Costfr(s1; : : : ; sq) = min
fr

q�1X
i=1

Hdist(fr(si); fr(si+1));

where the min is taken over all fr functions for the instrument. In words, the
cost of playing a sequence of notes with free �ngerings is the minimum number
of �nger movements required to play the sequence. Observe that determining
this cost for a given sequence of notes is an optimization problem.
As above, for any given collection C of sequences of notes in the range of

the instrument, we de�ne:

TotalCostfr(C) =
X
S2C

Costfr(S):

This is a measure of how di¢ cult it is to play all the sequences in C where all
�ngerings are allowed.
We now de�ne the problem we want to solve. For a collection C of sequences

of notes and a function F , we are interested in the following two problems:

� The instrument design problem with primary �ngerings is to �nd an in-
strument that minimizes TotalCostpr(C);

� The instrument design problem with free �ngerings is to �nd an instrument
that minimizes TotalCostfr(C).
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In this paper we solve these problems for restricted sets of instruments and
restricted collections of sequences of notes. These restrictions are the topics of
the following two subsections. How to e¢ ciently solve these problems in their
full generality (over all instruments and arbitrary collection of sequences) is an
open problem. (As noted in Section 1, enumeration appears to be impractical,
in general, due to the immense number of di¤erent instruments.)

2.3 The note sequences

In this section we de�ne the collections C of note sequences that we consider in
this paper. As discussed in the introduction, because common building blocks
of Western music are scales and arpeggios, we have chosen to include some
commonly occurring examples in our collections C. We have also included
the simple collections containing intervals of a given size. From these nicely
structured sequences we �nd evidence, when we analyze our results in Section 3
and in the appendix, of the importance of the special class of �basic�instruments
on which we focus our attention. Finally, we consider note sequences from the
melodies in two samples of Western music. These samples come from work of
Vos and Troost [28] and consist mostly of melodies by 13 well-known European
composers and folk music from several traditions. In fact, the results in [28] were
reported as frequency distributions for the intervals between adjacent notes in
the sequences (which work well for our purposes when combined with our results
for �xed interval sequences). We report these distributions below. We begin
by listing the names of the collections of structured sequences we consider in
Figure 3.
The forms of the sequences of notes in each collection are described in Figure

4. For example, the �rst sequence in the MajSc collection contains the notes
with indices given in the �gure. That is, the �rst sequence in MajSc is

N(0); N(2); N(4); N(5); N(7); N(9); N(11); N(12);

which is the major scale starting at N(0). The second sequence in MajSc is
obtained by adding 1 to each index in the �rst sequence. That is, the second
sequence is

N(1); N(3); N(5); N(6); N(8); N(10); N(12); N(13);

which is the major scale starting at N(1). The MajSc collection contains all
such scales with starting notes in the �rst seven octaves in the instrument�s
range. (Hence the highest starting note is N(83).)
In general, each collection of sequences contains all the sequences starting

at the notes in the �rst seven octaves. Hence, each collection contains 12 � 7 =
84 sequences. The highest note in each collection of scales, each collection of
arpeggios, and the collection of intervals of size 12 is the highest note in the
instrument�s range: N(95). The other collections of intervals do not contain
N(95).
Each pair of notes in the collection Inti is called an interval of size i.
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Figure 3: Abbreviations for collections of note sequences

Figure 4: First sequences (by note indices)
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Figure 5: Frequency distributions for Western music melodies

The table in Figure 5 contains summary data from two samples of Western
music melodies from [28]. For example, it states that 39% of all intervals between
adjacent notes in the sample of folk song melodies have size 2. An interval size
of 0 indicates two adjacent notes that are the same. Such occurences have zero
cost in our model, since no �nger movements are required. (We point out that
the distribution for bass lines may be quite di¤erent, with larger intervals being
more common.)
Observe that our collections range from sequences with many small intervals

between adjacent notes (e.g., ChrSc, Int1, and the melodies) to sequences with
larger such intervals (e.g., MajArp, MinArp, and Int11).

2.4 Instruments based on intervals

In this section we describe a special class of instruments, called interval-based
instruments, along with an algorthm for choosing primary �ngerings, which will
yield a number of our optimal instruments. The idea is to construct, for a given
choice of intervals, instruments that are likely to have low cost when playing
sequences of notes containing many of those intervals between adjacent notes.
At the end of the section we de�ne the class of basic instruments.
Let us begin with an informal example of how we structure a mapping from

the �ngerings to the notes. Consider the instrument matrix for instrument
7.1 on the left side of Figure 2. It is constructed from three interval matrices,
which are shown to its right in the �gure and labeled B(12; 3; 0), B(2; 3;�2), and
B(1; 1; 0). Notice that the interval matrices have column labels that correspond
to column labels of the instrument matrix. In particular, B(12; 3; 0) has column
labels 1; 2; 3; B(2; 3;�2) has column labels 4; 5; 6; and B(1; 1; 0) has column
label 7. To obtain a �ngering for a note, say N(i), we select one row from each
interval matrix such that the selected rows�labels sum to i. Then we construct
the �ngering by stringing together the three corresponding rows of 0s and 1s
from the matrices. For example, to get a �ngering for note N(23), we can
select the row of B(12; 3; 0) labeled 12, the row of B(2; 3;�2) labeled 10, and
the row of B(1; 1; 0) labeled 1, since 12 + 10 + 1 = 23. Stringing together the
corresponding rows yields the row of instrument 7.1 labeled N(23) (in the large
font). Observe that we could have selected the row of B(12; 3; 0) labeled 24, the
row of B(2; 3;�2) labeled �2, and the row of B(1; 1; 0) labeled 1; this yields the
row of instrument 7.1 labeled N(23) (in the small font), which is an alternate
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�ngering for N(23). (Below we describe the rule we use to select the primary
�ngerings.)
Let us examine the underlying logic of this system. Consider again instru-

ment 7.1 in Figure 2. Observe �rst that each interval matrix has the property
that the distance between adjacent rows is 1 (that is, the 0s and 1s di¤er in
only one column). Observe next that the row labels for the interval matrix
B(12; 3; 0) are multiples of 12, the row labels for B(2; 3; 0) are multiples of 2,
and the row labels for B(1; 1; 0) are multiples of 1, always in ascending order.
(Hence the �rst number in an interval matrix�s description is this multiplier.
The second number is the matrix�s number of columns and the third number
is its smallest row label.) Suppose we are playing the note N(6). Then the
cost of next playing the note up 12 indices (i.e., an octave) is just 1, as are the
costs of playing the notes up 1 or 2 indices. Although this is not the case for all
starting notes, it is often the case, or close to being the case; hence instrument
7.1 has the nice property that playing, for example, the modes of major scales
(consisting of intervals of size 1 and 2) has low total cost. Similarly, instrument
9 (also in Figure 2) has the property that playing consecutive notes that are 12,
4, or 1 step apart has low cost. This instrument has the property that playing
arpeggios (consisting of intervals of size 3, 4, and 5) has low total cost. (We
mean here that the scales and arpeggios are played as described in Section 2.3.)
We next present a formal description of our instruments. An interval matrix

is one of the 0-1 matrices in Figure 6, with row labels as shown in the �gure and
arbitrary distinct column labels. (The displayed column labels from 1; 2; 3; 4
will change in applications.) The row labels are determined by setting v to be
an integer, called the initial value, and setting s to be a positive integer, called
the interval size. Such a labeled matrix is denoted B(s; t; v), where t is the
number of columns. If v = 0, then we sometimes denote the matrix B(s; t).
See Figure 2 for speci�c examples of interval matrices. Observe that interval
matrices satisfy the following properties:

� The entries are 0 or 1.

� For adjacent rows, say r1 and r2, we have Hdist(r1; r2) = 1. (This also
holds for the �rst and last rows.)

� No two rows are identical.

Matrices satisfying these properties are called Gray codes. They play an
important role in communications theory (see [10] and [23]). Gray codes with a
given number of rows and columns need not be unique. We use a standard type
of Gray code called binary-re�ected. (For example, see [23] for the construction
method.)
The special type of instruments we consider in this paper are constructed

from a set of interval matrices as follows. Let

B = fB1 = B(s1; t1; v1); : : : ; Bm = B(sm; tm; vm)g

16



Figure 6: The interval matrices.
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be a set of m interval matrices such that t1+ � � �+ tm = 7 and the seven column
labels are distinct. From these interval matrices we construct a single matrix,
denoted I(B), as follows. For every selection of one row ri from each matrix Bi,
add the row r = (r1; : : : ; rm) to I(B); and label it with the note N(k), where k
is equal to the sum of the row labels of r1; : : : ; rm in B1; : : : ; Bm, respectively.
The seven columns of I(B) inherit their labels, called K(B), from the column
labels in B. Observe that if we interpret the set K(B) as keys, then I(B) has 27

rows representing each �ngering on K(B). If I(B) de�nes an instrument matrix
(i.e., its row labels include N(0); : : : ; N(95)), then we say the instrument matrix
is interval-based.
We next de�ne an algorithm for determining the primary �ngerings for an

interval-based instrument. One motivating idea is that, for simplicity, primary
�ngerings should arise from rows of the interval matrices with nonnegative la-
bels. Toward this end, we make the following de�nition.
Let B = fB1 = B(s1; t1; v1); : : : ; Bm = B(sm; tm; vm)g, where the vi are not

necessarily equal to 0. Assume I(B) de�nes an interval-based instrument. Con-
sider a row r = (r1; : : : ; rm) of I(B). Then the �ngering corresponding to r
is called nonnegative if the row labels for r1; : : : ; rm from B1; : : : ; Bm are all
nonnegative. If every row label in N(0); : : : ; N(95) has at least one nonnegative
�ngering mapped to it by I(B), then we say I(B) is nonnegative. Observe that
the instrument matrices de�ned in Figure 2 are nonnegative.

Remark 2 Let I(B) be a nonnegative interval-based instrument matrix and let
B(si; ti; vi) be an arbitrary interval matrix in B. Then B(si; ti; vi) must have a
row with label 0 (since N(0) is in the range), hence vi � 0.

We choose primary �ngerings using the following algorithm.

Algorithm P Let I(B) be a nonnegative interval-based instrument matrix.
Put the interval matrices in B into decreasing order by their interval sizes
(breaking ties with decreasing order by number of nonnegative row labels
in each matrix). The primary �ngering for a note N(k) in the range is
obtained by considering the matrices in this order and selecting, from each
matrix in turn, the row with largest nonnegative label such that the sum
of the labels of the latest and previously selected rows is at most k.

Example 3 Consider instrument 7.1 in Figure 2. Let us implement Algorithm
P to �nd the primary �ngering for N(11). First we put the interval matrices
into the order B(12; 3; 0), B(2; 3;�2), B(1; 1; 0). From matrix B(12; 3; 0) we
select row label 0 because the other row labels are greater than 11. From matrix
B(2; 3; 0) we select row label 10, because it is the largest label such that 0+10 �
11. Finally, from matrix B(1; 1; 0) we select row label 1, because it is the largest
label such 0 + 10 + 1 � 11. The rows of the interval matrices corresponding to
these three labels now determine the primary �ngering for N(11).

The rationale for putting the interval matrices into decreasing order by their
interval sizes is to, as much as possible, choose rows with small row labels,
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since rows near each other will tend to have small distances between them. But
the best justi�cation for the above algorithm is that it succeeds in producing
partitionable instruments that are often optimum (as we see in Section 3 and
in the appendix).
The following proposition states that Algorithm P always works.

Proposition 4 If I(B) is a nonnegative interval-based instrument matrix, then
Algorithm P de�nes a selection of primary �ngerings for I(B).

Proof: See Section 7 in the appendix. �
Finally, we de�ne the class of instruments that will be a main focus in the

rest of the paper.
An instrument is called basic, if it satis�es the following two properties:

P1 The instrument matrix is interval-based and nonnegative, and B(12; 3) is
one of the interval matrices.

P2 The primary �ngerings are given by Algorithm P.

Remark 5 All basic instruments are partitionable (when the three keys asso-
ciated with B(12; 3) are 1; 2; 3). However, there are partitionable instruments
that are not basic; two examples, called OptInt5 and OptInt7, are given below.

Remark 6 Let us point out how the basic instruments can be converted to
an instrument as described in Remark 1, where the thumb is used to select
the octave in place of keys 1,2,3. Simply label the rows of B(12; 3) with, say,
a; b; c; d; e; f; g; h, and replace the keys 1; 2; 3 on the instrument with keys a; b; c; d; e; f; g; h.
Then, for any note on any instrument matrix, the converted �ngering is obtained
from the row of the matrix by using the key from a; b; c; d; e; f; g; h that labels the
speci�ed combination of the keys 1; 2; 3 in B(12; 3).

We enumerate the basic instruments in the next section and show they have
a number of nice properties.

3 Main results

In this section we present our main results. We begin by enumerating all the
basic instruments in Proposition 7. We then compute the total costs for each
basic instrument over each collection�s note sequences. We show that the basic
instruments contain optimal partitionable instruments in a number of situations.
We also show that all the optimal partitionable instruments discussed in this
section have the property that no partitionable instrument with more than seven
keys can have lower total cost.

Proposition 7 Figure 7 contains all the basic instruments. (Since each instru-
ment uses the interval matrix B(12; 3), this matrix is not shown in the �gure.)
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Figure 7: The basic instruments.
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Proof: See Section 7. �
Observe that the instruments 1-32 in Figure 7 have the property that all

the interval matrices have vi � 0. For each remaining instrument, at least one
interval matrix has vi < 0; these instrument names are derived from the related
instruments 1-32.
In order to compare the basic instruments with each other and some pre-

existing instruments, a computer program was written using VBA in Excel.
The code takes as input the list of note sequences given in Figure 3 and the
basic instruments given in Figure 7. The code outputs the total cost of play-
ing each collection of sequences on each instrument, using both primary and
free �ngerings. The calculation of the total costs using free �ngerings (which
is an optimization problem) was accomplished using a dynamic programming
approach (e.g., see [7]). The one exception to this are the total costs for Eur and
Folk. These were computed by taking, for each basic instrument, a weighted
average of the total costs for Int1 ... Int12 using the frequencies in Figure 5
for the weights. (There are no total costs for free �ngerings because the actual
sequences are not readily available.) The results are summarized in Figures 8,
9, and 10.
Figure 8 contains examples of optimal basic instruments for each collection

of sequences using both primary and free �ngerings. (Rather than report all
optimal instruments in this table, only those that were optimal in the most
situations have been listed.) Figure 9 contains the complete output of total
costs for some of the best instruments in Figure 8. Figure 10 contains the same
information for �ve preexisting instruments, so that comparisons can be made.
The clarinet model we used has 24 keys and the saxophone model we used has
22 keys. Both models, with primary and alternate �ngerings, were obtained
from [4]. The EVI abbreviation refers to the Electronic Valve Instrument. This
is a �ngering system option for the EWI; it is based on trumpet �ngerings
and is essentially equivalent to basic instrument 25. For consistency, we used a
seven key partitionable version of the Bleauregard system. The �nal instrument,
labeled Optimal for Int5, is discussed below and de�ned in the appendix. The
total costs for the clarinet were computed over four octaves of its range (from
E1 to D#4) and then scaled to eight octaves for comparison. The total costs for
the saxophone were computed over three octaves of its range (from D1 to C#3)
and then scaled to eight octaves. The total costs for all the other instruments
were computed over three octaves and then scaled to eight octaves.
Let us �rst point out some instruments that stand out from Figure 8. Clearly

instrument 7.1 is noteworthy. It is an optimal basic instrument for MajSc, Ma-
jAcSc, MinHSc, MajHSc, OctSc, Int2, and Int10 using both primary and free
�ngerings. It is also optimal for PenSc using primary �ngerings and nearly op-
timal for Pen using free �ngerings (see Figure 9). Instrument 7.1 is also optimal
for Eur and Folk using primary �ngerings. Another important instrument is 1.2.
It is an optimal basic instrument for ChrSc, Int1, and Int11 using both primary
and free �ngerings. Instrument 9 is an optimal basic instrument for MajArp,
MinArp, Maj7Arp, Int4, and Int8. Instrument 8 is an optimal basic instrument
for Dom7Arp, Min7Arp, HaDimArp, Int3, and Int9 using both primary and free
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Figure 8: Optimal basic instruments
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�ngerings. (Instrument 21 is very similar to Instrument 8.)
Next, let us consider some intuition behind the performance of these im-

portant basic instruments. First, observe that each sequence in our collections
contains a particular distribution of interval sizes between adjacent notes:
MajSc, MajAcSc: 5 intervals of size 2 and 2 intervals of size 1.
MinHSc, MajHSc: 3 intervals of size 2, 3 intervals of size 1, and 1 interval

of size 3.
OctSc: 4 intervals of size 2 and 4 intervals of size 1.
PenSc: 3 intervals of size 2 and 2 intervals of size 3.
ChrSc: 12 intervals of size 1.
MajArp, MinArp: 1 interval of size 3, 1 interval of size 4, and 1 interval of

size 5.
Maj7Arp: 2 intervals of size 4, 1 interval of size 3, and 1 interval of size 1.
Dom7Arp, Min7Arp, HaDimArp: 1 interval of size 2, 2 intervals of size 3,

and 1 interval of size 4.
For these examples, we see that scales and arpeggios with the same interval

distributions have the same optimal instrument and the same total cost for
primary and free �ngerings. The proofs of (upcoming) Proposition ?? and
Remark 8 give a condition when this is true in general.
We observe, in general, that basic instruments whose interval matrices have

interval sizes that are close to a commonly occurring interval size in a sequence
of notes, tend to have low cost on that sequence. For example, observe that
instrument 7.1 has B(2; 3) as an interval matrix and it has low cost on those
sequences that contain many intervals of size 2: MajSc, MajAcSc, MinHSc,
MajHSc, OctSc, PenSc, Int2, Eur, and Folk. It also has low cost on Int10
because the use of Gray codes for interval matrices makes playing intervals of
size 10 also have low cost. Instrument 1.2 has B(1; 4;�2) as an interval matrix
so it has low cost on ChrSc, Int1, and Int11. Instrument 9 has B(4; 2) as an
interval matrix so it has low cost on MajArp, MinArp, and Maj7Arp, which
contain intervals of size 4 (and close to size 4), and Int4 and Int8. Similarly,
Instrument 8 has B(3; 2) as an interval matrix so it has low cost on Dom7Arp,
which contains intervals of size 3 (and close to size 3), and Int3 and Int9.
Another interesting feature of the optimal basic instruments is that instru-

ments 1.2 and 7.1 have better total costs in many situations than instruments
1 and 7. Consider instrument 7.1. One of its interval matrices is B(2; 3;�2).
The result is that the primary �ngerings on keys 4; 5; 6 in each octave are con-
structed from the middle six rows of matrix B(s; 3; v) in Figure 6. Observe that
these six rows are themselves a Gray code matrix, hence the cost of moving from
one octave to the next on an interval of size 2 using primary �ngerings is lower
for instrument 7.1 than for instrument 7. For example, consider playing N(10)
then N(12) on instrument 7.1 in Figure 2. The cost on keys 4,5,6 is 1 due to
this six-row gray code in the middle of B(2; 3;�2). If we had used B(2; 3; 0) in-
stead (yielding instrument 7), this cost would have been 3. A similar argument
holds for instruments 1.2 compared to instrument 1 on intervals of size 1. This
provides a justi�cation for using Algorithm P for selecting primary �ngerings
based on nonnegative instrument matrices.
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Figure 9: Total costs for some of the best basic instruments

We see in all cases that using free �ngerings results in lower total cost than
using primary �ngerings.
Unfortunately, as Figure 9 shows, none of our best basic instruments com-

pletely dominates the others. In particular, instrument 7.1 is clearly the best on
MajSc, MajAcSc, MinHSc, MajHSc, OctSc, PenSc, Eur, and Folk; instrument
1.2 is clearly the best on ChrSc; instrument 8 is clearly the best on Dom7Arp,
Min7Arp, and HaDimArp; and instrument 9 is clearly the best on MajArp, Mi-
nArp, and Maj7Arp. Presumably, the �nal choice of an instrument design based
on these computations would be in�uenced strongly by the type of sequences
one expects to be playing most frequently.
Figures 9 and 10 demonstrate that the four best basic instruments essen-

tially dominate the clarinet and saxophone on total cost (and, of course, have
far fewer keys) on every collection of note sequences. Instruments 1.2, 7.1, and 8
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Figure 10: Total costs for other instruments
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dominate the EVI �ngering system on all scales and arpeggios, except MajArp
and MinArp. Instrument 9 dominates the EVI on MajArp and MinArp. Instru-
ment 1.2 equals or slightly dominates the Bleauregard on total costs on scales
and clearly dominates on arpeggios. The instrument Opt for Int5 (discussed
in the appendix) is clearly the best instrument in the �gures on MajArp and
MinArp (and Int5 and Int7). However, its cost on scales (particularly ChrSc)
is quite high compared to instruments 1.2, 7.1, and 8.
The preceding discussion has shown us which basic instruments are best for

some common sequences of notes. But are the basic instruments good examples
from the larger class of partitionable instruments, in which we are more inter-
ested? In the appendix, we provide evidence that this is the case by showing
that optimal basic instruments are often optimal partitionable instruments, for
both primary and free �ngerings. A key exception is for the collections MajArp,
MinArp, Int5, and Int7, where we show that one can do better with a non-basic
partitionable instrument (Opt for Int5).
Let us point out that Proposition 1 in the appendix is generalized in two

ways in Remark 8 in Section 4. This analysis is not complete and suggests some
open problems (see Section 6).

4 Robustness and Experimentation

In this section we reconsider our choice of the function Hdist, which measures
the di¢ culty of playing one note after another. We consider some alternative
functions and check the robustness of our main results for the two instruments
1.2 and 1.7. We also propose an experiment that could be conducted to estimate
this function.
As we mentioned in Section 2.2, the Hdist function is one possible measure

of the di¢ culty of playing two notes, one after the other. However, it may not be
the case, for example, that moving two �ngers is, on average, twice as di¢ cult
as moving one �nger, or that moving three �ngers is, on average, three times as
di¢ cult as moving one �nger, as the Hdist function implies. To generalize this
notion of di¢ culty, let F be an increasing function from N = f1; 2; 3; : : :g to R.
Then we de�ne Fdist(f1; f2), for �ngering f1 and f2, as follows:

Fdist(f1; f2) = F (Hdist(f1; f2)):

We obtain the following general result for instruments 1.2 and 7.1.

Remark 8 By slightly modifying the proof of Proposition ??, we can show the
following stronger result. Consider any sequence of notes that spans at most
one octave and has, between adjacent notes, h intervals of size 1, w intervals of
size 2, and no intervals with other sizes. Suppose h

2 � w. (Examples of such
note sequences include the major, melodic minor (ascending and descending),
acoustic major, octatonic, whole tone, and diminshed scales (as well as Int2).
See [25] for de�nitions of these scales.) Furthermore, consider any Fdist func-
tion (where, by de�nition, F is increasing). Then instrument 7.1 is an optimal
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partitionable instrument using primary �ngerings where the Fdist function is
used in place of the Hdist function (and we de�ne the appropriate sequence col-
lections). In addition, it is easy to check that instrument 1.2 remains optimal
for any such Fdist function on ChrSc.

To further check the robustness of our results, consider the following exam-
ples of functions F :

F (x) = x
3
2

F (x) = x
1
2

F (x) = 2x� 1

F (x) =
1

2
x+

1

2

These functions F have the following nice properties: they are increasing in
x; they are normalized so that F (1) = 1; one example is strictly concave and
one is strictly convex; two examples are linear; two examples have values higher
than F (x) = x and two have values lower than F (x) = x; and the range of these
examples appears to be large enough to include all reasonable real di¢ culties
(see discussion below).
Redoing some of the calculations from Section 3 using the Fdist function

based on the above choices for F , we �nd that instrument 7.1 remains an opti-
mal instrument using primary �ngerings for melodies and MinHSc (over basic
instruments). However, instrument 7.1 remains optimal for only two of the
alternate cost functions for pentatonic scales.
A related issue is the following: Can we experimentally determine the func-

tion F? A key factor in the notion of �di¢ culty� is being able to depress
or release a set of keys as simultaneously as possible. On instruments such as
woodwinds, and especially on very touch sensitive instruments such as the EWI,
the more simultaneous the movements, the better the sound, especially when
playing note sequences that are connected by slurs or are played rapidly.
One way to measure the di¢ culty would be to have a musician try to change

from one speci�ed �ngering to another precisely at a tick of a metronome. Using
sensors, we could measure the amount of time during which a wrong note (or
notes) is being played and use this as a meaure of di¢ culty: the larger the error,
the more di¢ cult the change in �ngerings. Let t be the time of the metronome
tick for switching �ngerings. Consider a pair of �ngerings that di¤er on n keys.
Let t1; : : : ; tn be the actual times each �nger switches positions. Let us assume
t1 < � � � < tn. If t1 < t < tn, then the error is tn� t1. If tn < t, then the error is
t� t1. If t < t1, then the error is tn � t. The experiment could be performed as
follows: For each value of n, we have each subject repeatedly perform a �ngering
change for a variety of di¤erent �ngering changes and then average the errors.
An experiment of this nature is reported in [29].
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5 Conclusions

The basic instrument 7.1 is an optimal partitionable instrument using primary
�ngerings for playing collections of major, melodic minor (ascending and de-
scending), whole tone, acoustic, octatonic, and diminished scales (as well as Int2
and Int10). Instrument 7.1 is also an optimal basic instrument for harmonic mi-
nor scales using both primary and free �ngerings. Furthermore, instrument 7.1
is an optimal basic instrument for pentatonic scales using primary �ngerings
(and is nearly optimal for free �ngerings) and is an optimal basic instrument for
playing real-world melodies in the collections from European and folk music. (In-
strument 7.1 retains these optimality properties for the alternate cost functions
we considered, except for the case of pentatonic scales.) For playing chromatic
scales, the basic instrument 1.2 is an optimal partitionable instrument (along
with the Bleauregard) using both primary and free �ngerings (and it retains
this property for the alternate cost functions we considered). For playing ma-
jor, minor, and major 7 arpeggios, instrument 9 is an optimal basic instrument
using primary and free �ngerings; and the instruments OptInt5 and OptInt7 are
partititionable (non-basic) instruments that are even better using primary and
free �ngerings on major and minor arpeggios. For playing dominant 7 arpeggios,
instrument 8 is an optimal basic instrument using primary and free �ngerings.
We found that instruments 8 and 9 are optimal partionable instruments for the
diminished 7 arpeggios and the augmented triad arpeggios, respectively.We also
found that the optimal partitionable instruments over all collections of intervals
using primary �ngerings are basic, with the exception of Int5 and Int7, whose
optimal partitionable instruments are OptInt5 and OptInt7. Finally, the op-
timal partitionable instruments over the collections Int1, Int4, Int8, and Int12
using free �ngerings are also basic.
We have observed that the total costs for the optimal partitionable instru-

ments we have identi�ed on seven keys (the minimum possible for the range
of the instruments) cannot be improved for the associated optimal sequence
collections by considering partitionable instruments with more keys.
Finally, we have performed a robustness check for the instruments 1.2 and

1.7 and we �nd that they remain optimal in a number of situations.
In conclusion it seems that the basic instruments provide a good source of

instrument designs that have low total cost for playing common sequences of
notes. There is no basic instrument that is optimal for all the sequences of notes
we considered. However, given our results on melodies from Western music and
the importance of scales in Western music (and given our robustness checks), one
could argue that a real instrument based on instrument 7.1 (and implemented
as in Remark 1) would perform well in practice.

6 Open questions

Although we have been able to �nd optimal partitional instruments for a number
of situations, some questions remain unresolved. For example, is instrument 7.1
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an optimal partitionable instrument for harmonic minor or pentatonic scales
using primary or free �ngerings? (These scales include intervals of size 3.)
Is instrument 8 an optimal partitionable instrument for dominant 7 arpeggios
using primary or free �ngerings? Is instrument OptInt5 (equivalently OptIn7)
an optimal partitionable instrument on MajArp and MinArp using primary or
free �ngerings? Perhaps a variation on the proof of Proposition ??, part 1 could
resolve some of these questions.
Our basic instruments are constructed from Gray code matrices of a partic-

ular common type with a particular type of row labels and primary �ngerings.
For cases where we do not know the optimal partitionable instruments, could
basic instruments based on di¤erent Gray code matrices and/or di¤erent row
labels and/or di¤erent primary �ngerings yield lower cost instruments?
Here are some other questions to consider: Are there other note sequences

that would be important to consider in searching for low cost instruments?
Can a better model of di¢ culty of playing sequences of notes be obtained from
experiments as outlined in Section 4? Are there other situations, such as the
one discussed in Remark 1, where more than seven keys could be advantageous?

7 Appendix

In this appendix we present complete proofs of several results presented in this
paper.
Calculation of number of di¤erent mappings for the primary �n-

gerings on the keys 4; 5; 6; 7: There are 16 di¤erent �ngerings on the keys
4; 5; 6; 7. Hence, there are

�
16
12

�
di¤erent ways to choose 12 primary �ngerings

in a given octave and 12! is the number of di¤erent ways to order a particular
choice of 12 �ngerings, each of which corresponds to a di¤erent mapping from
�ngerings to pitch classes. Thus, we get

�
16
12

�
�12! � 8:7�1011 di¤erent mappings

for the primary �ngerings on the keys 4; 5; 6; 7. �
Proof of Proposition 4: We prove the result in a slightly more general

setting: We let the range be the maximal set of consecutive notes the intru-
ment can play using nonnegative rows of its interval matrices. Let I(B) be a
nonnegative interval-based instrument matrix, with

B = fB1 = B(s1; t1; v1); : : : ; Bm = B(sm; tm; vm)g :

Assume s1 � � � � � sm. The result is clearly true for m = 1 (in which case
s1 = 1). Assume inductively that it is true for instruments with m � 1 � 1
matrices. Since we can play all notes in the original range with B1; : : : ; Bm, then
we must be able to play all notes in the smaller range N(0); : : : ; N(s1� 1) with
B2; : : : ; Bm, since none of these notes can involve choosing a row from B1 with
non-zero row label. So we can apply the inductive hypothesis to B2; : : : ; Bm to
see that the greedy algorithm produces, at least, all the notesN(0); : : : ; N(s1�1)
using the matrices B2; : : : ; Bm. But now it should be clear that the greedy
algorthm also works for B1; : : : ; Bm over the original range. �
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Proof of Proposition 7: Observe that by Remark 2, all basic instruments
derive from interval matrices B(si; ti; vi) such that vi � 0. We begin the proof
by considering the case the vi = 0. Observe that it su¢ ces to enumerate those
instruments that can play the notes N(1); : : : ; N(11). The reason is that, by
de�nition, each instrument can play N(0); and, if it can play N(0); : : : ; N(11) ,
then it can play the entire range since each instrument uses B(12; 3).
Since each instrument has three keys dedicated to B(12; 3), it su¢ ces to

consider the following cases for the remaining four keys.
Case 1: One matrix with 4 keys.
Case 2: One matrix with 3 keys and one matrix with 1 key.
Case 3: Two matrices, each with 2 keys.
Case 4: One matrix with 2 keys and two matrices, each with 1 key.
Case 5: Four matrices, each with 1 key.

Case 1: The only solution is to use B(1; 4).
Case 2: The only matrices with 3 keys to use are B(1; 3) and B(2; 3) because,

if we use B(s; 3) with s � 3, then there is no matrix with 1 key we can add to
get both N(1) and N(2).
Suppose we use B(1; 3). Then we can add B(s; 1), for 4 � s � 8, and get all

the notes.
If we use B(s; 1), for s � 3, we cannot get N(11). If we use B(s; 1), for

s � 9, we cannot get N(8).
Suppose we use B(2; 3). Then we must add B(1; 1) in order to get N(1).
Case 3: We consider two matrices of the form B(s; 2). If we do not choose

B(1; 2), then we cannot get N(1). If we add B(1; 2) or B(2; 2), we cannot get
N(11). If we add B(s; 2), for s � 5, we cannot get N(4). If we add B(3; 2) or
B(4; 2), we can get all the notes.
Case 4: We must choose one matrix B(s; 2). If we choose B(s; 2), for s � 5,

then we cannot get N(1); N(2); N(3), and N(4) with two matrices, each with 1
key.
Suppose we choose B(1; 2). The only way to get N(11) is to choose B(s1; 1)

and B(s2; 1) with s1; s2 � 4. The only way to get N(4) is to add B(4; 1). To
this we can add B(s2; 1), for 4 � s2 � 8. We cannot add B(s2; 1), for s2 � 9,
since we could not get N(8).
Suppose we choose B(2; 2). We must add B(1; 1) to get N(1). We cannot

add B(1; 1), B(2; 1), or B(3; 1), because we could not get N(11). We cannot add
B(9; 1), B(10; 1), or B(11; 1), because we could not get N(8). The remaining
matrices B(s; 1), for 4 � s � 8, can be added.
Suppose we choose B(3; 2). To get N(1) and N(2), we must add either

B(1; 1); B(1; 1) or B(1; 1); B(2; 1). Both choices work.
Suppose we choose B(4; 2). To get N(1), N(2), and N(3), we must add

B(1; 1) and B(2; 1).
Case 5: The solution must contain one B(1; 1) to get N(1). In order to get

N(2), the solution must contain an additional B(1; 1) or B(2; 1).
Case 5.1: Suppose we add B(1; 1). To get N(3), we must add B(1; 1),

B(2; 1), or B(3; 1).
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Case 5.1.1: Suppose we add B(1; 1). We have to add B(8; 1) to get N(11),
but then we cannot get N(4).
Case 5.1.2: Suppose we add B(2; 1). We have to add B(7; 1) to get N(11),

but then we cannot get N(5).
Case 5.1.3: Suppose we add B(3; 1). We have to add B(6; 1) to get N(11).

This works.
Case 5.2: Suppose we add B(2; 1) (and no additional B(1; 1) is used). To

get N(4), we must add B(2; 1), B(3; 1), or B(4; 1).
Case 5.2.1: Suppose we add B(2; 1). We must add B(6; 2) to get N(11).

This works.
Case 5.2.2: Suppose we add B(3; 1). We must add B(s; 1), for s � 5 to

get N(11). If we add B(s; 1), for s � 8, we cannot get N(7). Each of B(5; 1),
B(6; 1), and B(7; 1) works.
Case 5.2.3: Suppose we add B(4; 1). We must add B(s; 1), , for s � 4 to

get N(11). If we add B(s; 1), for s � 9 we cannot get N(8). Each of B(4; 1),
B(5; 1), B(6; 1), B(7; 1),and B(8; 1) works.
To �nish the proof it su¢ ces to enumerate the instruments with vi < 0 for at

least one interval matrix. To see that Figure 7 contains the complete list of such
instruments, consider an instrument I(B) with an interval matrix B(si; ti; vi)
for B such that vi < 0. Consider the instrument I 0(B) obtained by changing
just this one interval matrix by adding si to each of its labels. It is easy to see
that I 0(B) also satis�es our conditions. Hence I(B) can be transformed to an
instrument that satis�es our conditions with vi = 0 for all its interval matrices.
Hence any instrument that satis�es our conditions and has vi < 0 for at least
one of its interval matrices, can be obtained from one of the 32 basic instruments
in Figure 7 by reducing various values of vi by increments of si. Using this fact,
the second list above was created by straightforward enumeration. �
Proof of Proposition ??, part 1:
(The proof given here is similar to the proof of Theorem 3 in [13].) The

extension to prove the Remark 8 is minor.
Observe that whenever a sequence crosses from one octave to the next higher

octave, it costs 1 on keys 1; 2; 3, for any choice of primary �ngerings. Hence we
focus our attention on the cost of playing these sequences on keys 4; 5; 6; 7. In
particular, we let Hdist0(pr(N(k); pr(N(l)) equal the Hamming cost on keys
4; 5; 6; 7 of playing N(k) then N(l).
Let us divide up the intervals of size 1 and 2 in the range N(0); : : : ; N(95)

into the following classes. For i = 0; : : : ; 11, let Int1(i) equal the set of intervals
of size 1 in the range that start on the notes of the form N(12j+i), where j � 0.
Hence, for example, Int1(0) = ffN(0); N(1)g; fN(12); N(13)g; : : : ; fN(84); N(85)gg
and Int1(1) = ffN(1); N(2)g; fN(13); N(14)g; : : : ; fN(85); N(86)gg. Similarly,
for i = 0; : : : ; 11, let Int2(i) equal the set of intervals of size 2 in the range
that start on the notes of the form N(12j + i), where j � 0. Observe that
Int1(i) contains 8 intervals for i = 0; : : : ; 10 and only 7 intervals for i = 11.
Similarly, Int2(i) contains 8 intervals for i = 0; : : : ; 9 and only 7 intervals for
i = 10; 11. Observe that, because our instrument is partitionable, we have that
the cost of playing any interval in Int1(i) is the same on keys 4; 5; 6; 7 for any
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i = 0; : : : ; 11. Similarly, the cost of playing any interval in Int2(i) is the same
for any i = 0; : : : ; 11.
Consider the �rst 12 sequences in MajSc (i.e., those with �rst note in the

�rst octave) and consider the �rst two notes, that is, the �rst interval in each
of these sequences. These 12 intervals contain exactly one interval in Int2(i),
for each i = 0; : : : ; 11. The same is true for the second 12 sequences in MajSc.
Hence the contribution to the total cost (on keys 4; 5; 6; 7) of playing the �rst
interval in all the sequences in MajSc is 7 �

P11
i=0Hdist

0(pr(N(i)); pr(N(i+2)).
Similarly, the contribution to the total cost of playing the second interval in all
the sequences in MajSc is 7 �

P11
i=0Hdist

0(pr(N(i)); pr(N(i + 2)). The con-
tribution to total cost of playing the third interval in all the sequences in
MajSc is 7 �

P11
i=0Hdist

0(pr(N(i)); pr(N(i + 1)), since this interval has size
1; and so on. Since there are 5 intervals of size 2 in each sequence in Ma-
jSc, the total cost of playing all the intervals of size 2 in MajSc is 5 � 7 �P11

i=0Hdist
0(pr(N(i)); pr(N(i + 2)); and, since there are 2 intervals of size 1

in each sequence in MajSc, the total cost of playing all the intervals of size 1 in
MajSc is 2 � 7 �

P11
i=0Hdist

0(pr(N(i)); pr(N(i+ 1)).
Observe that

11X
i=0

Hdist0(pr(N(i)); pr(N(i+ 1)) =
11X
i=0

Hdist0(pr(N(i+ 1)); pr(N(i+ 2)):

Hence, the total cost of playing all the sequences in MajSc can be written as
follows

11X
i=0

8<: 7 �Hdist0(pr(N(i)); pr(N(i+ 1))+
7 �Hdist0(pr(N(i+ 1)); pr(N(i+ 2))+
35 �Hdist0(pr(N(i)); pr(N(i+ 2))

9=; (1)

Observe that each bracketed term in (1) involves three parts based on an
interval of size 2 and the two intervals of size 1 �contained in�that interval of
size 2. It is easy to see that the best possible cost to play three such intervals
involves having two at cost 1 and one at cost 2 (since it is not possible to have all
three at cost 1). Furthermore, due to the coe¢ cients of 7 and 35, it is optimal
to have the cost of 2 on the part with the interval of size 1. This is precisely
what instrument 7.1 achieves. �
Proof of the remainder of Proposition ??: Consider Int4. For octave 1,

consider the 4 sequences of notes: N(0); N(4); N(8); N(12); N(1); N(5); N(9);
N(13); N(2); N(6); N(10); N(14); N(3); N(7); N(11); N(15). For octave 2 con-
sider the 4 sequences of notesN(12); N(16); N(20); N(24); N(13); N(17); N(21);
N(25); N(14); N(18); N(22); N(26); N(15); N(19); N(23); N(27). Consider the
similar sequences for the next 5 octaves. Observe that these sequences have the
property that the total cost of playing them has the same total cost as the col-
lection Int4. The best possible cost of playing each sequence, on the non-octave
keys, is 4, since if any two jumps have a cost of 1, then the third must have
a cost of 2 (since its a di¤erent pitch class). The best possible cost of playing
each sequence, on the octave keys, is 1, since each spans two octaves. Hence
the best possible total cost for each sequence is 5. Since there are 4 � 7 = 28
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sequences, the best possible total cost for playing these sequences 5 � 28 = 140.
Instruments 9 and 14 achieve this cost.
Consider Int8. For octave 1, consider the 8 sequences of notes: N(0); N(8);

N(16); N(24); N(1); N(9); N(17); N(25); and so on. For octave 3 consider the
8 sequences of notes N(48); N(56); N(64); N(72); N(49); N(57); N(65); N(73);
and so on. Consider the similar sequences for octaves 5 and 7. Observe that
these sequences have the property that the total cost of playing them has the
same total cost as the collection Int8 plus the cost of playing the �rst 8 intervals
of size 8 in octave 8. The best possible cost of playing each sequence, on the
non-octave keys, is 4, since if any two jumps have a cost of 1, then the third
must have a cost of 2 (since its a di¤erent pitch class). The best possible cost of
playing each sequence, on the octave keys, is 2, since each spans three octaves.
Hence the best possible total cost for each sequence is 6. Since there are 8�4 = 32
sequences, the best possible total cost for playing these sequences 6 � 32 = 192.
Observe that 8 of these sequences each contain an interval that is outside of
Int8. If each of these intervals contributes the maximum possible value of 3 to
the total cost of the 32 sequences, then the best possible cost of playing Int8 is
192� 8 � 3 = 168. Instruments 9 and 14 achieve this cost. �

Acknowledgement 9 The author would like to thank Gerald Beauregard (2010
e-mail exchange; unreferenced) for sharing his insights.

References

[1] G. Beauregard. Rethinking the Design of Wind Controllers [master�s thesis].
Hanover, NH: Dartmouth College; 1991.

[2] R. Burkard, M. Dell�Amico, S. Martello. Assignment Problems. Philade-
phia: Society for Industrial and Applied Mathematics; 2009.

[3] R.E. Burkard, J. O¤ermann. Entwurf von Schreibmaschinentastaturen mit-
tels quadratischer Zuordnungsprobleme. Z. Oper. Res. (B). 1977;21:B121-
B132.

[4] D.L. Carroll. www.�ngering-charts.com (March 27, 2006).

[5] J. Chadabe. Electric Sound: The Past and Promise of Electronic Music.
Upper Saddle River, NY: Prentice Hall; 1997.

[6] P. Cook. A meta-wind-instrument physical model, and a meta-controller for
real time performance control. In: Proceedings of the 1992 International
Computer Music Conference (ICMC�92); San Jose, CA: 1992;273-276.

[7] T.H. Corman, C.E. Leiserson, R.L. Rivest, C. Stein. Introduction to Algo-
rithms, Third Edition. Cambridge, MA: MIT Press; 2009.

[8] W.J. Dowling, D.L. Harwood. Music Cognition. San Diego: Academic
Press; 1986.

33



[9] A. Dvorak, W.L. Dealey. �Optimize the character layout of the computer
keyboard,�US Patent 2040248 (May 12, 1936).

[10] F. Gray. �Pulse code communication,� US Patent 2632058 (March 17,
1953).

[11] R.W. Hamming. Error detecting and error correcting codes. Bell System
Tech Jour. 1950;29:2:147-160.

[12] M. Hart, R. Bosch, E. Tsai. Finding optimal piano �ngerings. The UMAP
Journal 2000;21:2:167�177.

[13] D. Hartvigsen. Optimal electronic musical instruments. Eur Jour of Oper
Res 2010;206:614-622.

[14] E.G. Kaplan. Kaplan�s Functional and Surgical Anatomy of the Hand, 3rd
Edition. Philadephia: J.B. Lippincott Company; 1984.

[15] A.A. Kasimi, E. Nichols, and C. Raphael. Automatic �ngering system
(AFS). Unpublished manuscript. 2005.

[16] D. Keislar. History and principles of microtonal keyboards. Computer Mu-
sic Journal. Spring 1987;11:1:18-28.

[17] Article: Key [Internet]. Encyclopædia Britannica Online; [cited 2010 Jan
31]. Available from: http://search.eb.com/eb/article-9045214.

[18] C.E. Lang, M.H. Schieber. Human �nger independence: Limitations due to
passive mechanical coupling versus active neuromuscular control. J. Neu-
rophysiology 2004;92:2802-2810.

[19] E.R. Miranda, M.M. Wanderley. New Digital Musical Instruments: Con-
trol and Interaction Beyond the Keyboard. Middleton, Wisconsin: A-R
Editions, Inc.; 2006.

[20] R. Parncutt, J.A. Sloboda, E.F. Clarke, M. Raekallio, P. Desain. An er-
gonomic model of keyboard �ngering for melodic fragments. Music Percep-
tions 1997;14:4:341-382.

[21] M.A. Pollatachek, N. Gershoni, Y.T. Radday. Optimization of the type-
writer keyboard by simulation. Angewandte Informatic 1976;17:438-439.

[22] D.M. Rondel. The Harvard Dictionary of Music, 4th Edition, Cambridge,
MA: Bel Knap Press of Harvard University Press.; 2003. p. 757.

[23] C. Savage. A survey of combinatorial Gray codes. SIAM Review
1997;39:605-629.

[24] Sayegh, S. Fingering for string instruments with the optimum path para-
digm. Computer Music Journal 1989;13:3:76�84.

34



[25] Article: Scale [Internet]. Encyclopædia Britannica Online; [cited 2010 Jan
20]. Available from: http://search.eb.com/eb/article-64512.

[26] G. Scavone. The PIPE: Explorations with breath control. In: Proceedings
of the 2003 International Conference on New Interfaces for Musical Expres-
sion (NIME�03); 2003; Montreal, Canada: McGill University; 2003:15-18.

[27] R.N. Shephard. Geometrical approximations to the structure of musical
pitch. Psych Rev 1982;89:205-333.

[28] P.G. Vos, J.M. Troost. Ascending and descending melodic intervals: Sta-
tistical �ndings and their perceptual relevance, Music Perc: An Interdisci-
plinary Jour, Summer, 1989;6:4:383-396.

[29] E.G. Walsh. Synchronization of human �nger movements: Delays and
sex di¤erences with isotonic �antiphase�motion, Experimental Physiology
1997;82:559-565.

[30] R.W. Worrall, R.W. Sharp, inventors; Method of automated musical in-
strument �nger �nding, US Patent 7238876. 2007 July 3.

[31] M. Yunik, M. Morys, G.W. Swift. A microprocessor based digital �ute.
In: Proceedings of the 1983 International Computer Music Conference
(ICMC�83); 1983; Rochester, NY: ICMC; 1983:127-136.

35


